REVIEWS

Palladium-Catalyzed Intermolecular Functionalization of Unactivated Methylene C(sp3)—H Bonds

  • Mingshun Mei ,
  • Yanghui Zhang
Expand
  • a School of Chemical Science and Engineering, Tongji University, Shanghai 200092
    b Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092

Received date: 2024-06-09

  Revised date: 2024-07-17

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(22371211); Natural Science Foundation of Shanghai City(23ZR1468700)

Abstract

Although transition metal-catalyzed methylene C(sp3)—H functionalization is a great challenge, it has made noticeable progress in recent years. This review specifically describes Pd-catalyzed intermolecular functionalization of unactivated methylene C(sp3)—H bonds. A variety of reactions, including arylation, alkylation, alkenylation/alkynylation, acetoxylation, amination, halogenation, borylation, and silylation reactions, have been discussed. Due to the inert properties, methylene C(sp3)—H functionalization reaction usually relies on the use of directing group strategies, which can not only control regioselectivity but also address low reactivity issue. Various directing groups, including strongly coordinating bidentate auxiliaries and weakly coordinating innate functional groups, have proven to be effective for enabling methylene C(sp3)—H functionalization.

Cite this article

Mingshun Mei , Yanghui Zhang . Palladium-Catalyzed Intermolecular Functionalization of Unactivated Methylene C(sp3)—H Bonds[J]. Chinese Journal of Organic Chemistry, 2025 , 45(2) : 620 -640 . DOI: 10.6023/cjoc202406012

References

[1]
(a) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
[1]
(b) Chu, J. C. K.; Rovis, T. Angew. Chem., Int. Ed. 2018, 57, 62.
[1]
(c) Chen, Z.; Rong, M.-Y.; Nie, J.; Zhu, X.-F.; Shi, B.-F.; Ma, J.-A. Chem. Soc. Rev. 2019, 48, 4921.
[1]
(d) Zhang, Y.-H.; Shi, G.-F.; Yu, J.-Q. In Comprehensive Organic Synthesis, 2nd ed.; Ed.: Molander, G., Knochel, P., Elsevie, Oxford, U.K., 2014, Vol. 3, p. 1101.
[2]
He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
[3]
(a) Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022.
[3]
(b) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
[3]
(c) Antermite, D.; Bull, J. A. Synthesis 2019, 51, 3171.
[3]
(d) Mishra, A. A.; Subhedar, D.; Bhanage, B. M. Chem. Rec. 2019, 19, 1829.
[3]
(e) Lucas, E. L.; Lam, N. Y. S.; Zhuang, Z.; Chan, H. S. S.; Strassfeld, D. A.; Yu, J.-Q. Acc. Chem. Res. 2022, 55, 537.
[3]
(f) Chen, X.; Li, B.; Tong, H.; Qi, L.; He, G.; Chen, G. Chin. J. Chem. 2022, 40, 2502.
[3]
(g) Wang, P.-S.; Gong, L.-Z. Chin. J. Chem. 2023, 41, 1841.
[3]
(h) Han, Y. Q.; Shi, B.-F. Acta Chim. Sinica 2023, 81, 1522.
[3]
(i) Yoo, W.-J.; Li, C.-J. In C—H Activation, Ed.: Yu, J.-Q.; Shi, Z., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, p. 281.
[4]
(a) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
[4]
(b) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
[4]
(c) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
[4]
(d) Wu, Q.-F.; Wang, X.-B.; Shen, P.-X.; Yu, J.-Q. ACS Catal. 2018, 8, 2577.
[4]
(e) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.
[4]
(f) Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem. Int. Ed. 2019, 58, 2134.
[4]
(g) Xiao, L.-J.; Hong, K.; Luo, F.; Hu, L.; Ewing, W. R.; Yeung, K.-S.; Yu, J.-Q. Angew. Chem. Int. Ed. 2020, 59, 9594.
[4]
(h) Zhuang, Z.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 12015.
[5]
Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.
[6]
(a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
[6]
(b) Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Nat. Chem. 2018, 10, 755.
[6]
(c) Mei, M.-S.; Zhang, Y. Org. Lett. 2023, 25, 4985.
[7]
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[7]
(b) Song, G. Y.; Li, X. W. Acc. Chem. Res. 2015, 48, 1007.
[7]
(c) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.
[7]
(d) Zhang, Q.; Shi, B.-F. Acc. Chem. Res. 2021, 54, 2750.
[7]
(e) Babu, S. A.; Aggarwal, Y.; Patel, P.; Tomar, R. Chem. Commun. 2022, 58, 2612.
[7]
(f) He, Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y.-G.; Yu, Z. Chem. Soc. Rev. 2022, 51, 2759.
[7]
(g) Das, J.; Ali, W.; Maiti, D. Trends Chem. 2023, 5, 551.
[7]
(h) Yang, X.; Liu, X.; Wang, L. Chin. J. Org. Chem. 2023, 43, 914 (in Chinese).
[7]
(杨幸, 刘旭, 王丽佳, 有机化学, 2023, 43, 914.)
[8]
(a) Jin, L.; Wang, J.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 12352.
[8]
(b) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[9]
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
[10]
Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
[11]
Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.
[12]
Yan, S.-B.; Zhang, S.; Duan, W.-L. Org. Lett. 2015, 17, 2458.
[13]
Tong, H.-R.; Zheng, S.; Li, X.; Deng, Z.; Wang, H.; He, G.; Peng, Q.; Chen, G. ACS Catal. 2018, 8, 11502.
[14]
Huang, Y.; Lv, X.; Tong, H.-R.; He, W.; Bai, Z.; Wang, H.; He, G.; Chen, G. Org. Lett. 2024, 26, 94.
[15]
Pan, F.; Shen, P.-X.; Zhang, L.-S.; Wang, X.; Shi, Z.-J. Org. Lett. 2013, 15, 4758.
[16]
Gou, Q.; Zhang, Z.-F.; Liu, Z.-C.; Qin, J. J. Org. Chem. 2015, 80, 3176.
[17]
(a) Ling, P.-X.; Fang, S.-L.; Yin, X.-S.; Chen, K.; Sun, B.-Z.; Shi, B.-F. Chem.-Eur. J. 2015, 21, 17503.
[17]
(b) Chen, K.; Li, Z.-W.; Shen, P.-X.; Zhao, H.-W.; Shi, Z.-J. Chem.-Eur. J. 2015, 21, 7389.
[18]
Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X. Adv. Synth. Catal. 2016, 358, 887.
[19]
Lou, J.; Wang, Q.; He, Y.; Yu, Z. Adv. Synth. Catal. 2018, 360, 4571.
[20]
Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[21]
Han, Y.-Q.; Yang, X.; Kong, K.-X.; Deng, Y.-T.; Wu, L.-S.; Ding, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 20455.
[22]
Zhu, R.-Y.; Liu, L.-Y.; Park, H. S.; Hong, K.; Wu, Y.; Senanayake, C. H.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 16080.
[23]
Xia, G.; Weng, J.; Liu, L.; Verma, P.; Li, Z.; Yu, J.-Q. Nat. Chem. 2019, 11, 571.
[24]
Probst, N.; Grelier, G.; Dahaoui, S.; Alami, M.; Gandon, V.; Messaoudi, S. ACS Catal. 2018, 8, 7781.
[25]
He, G.; Chen, G. Angew. Chem., Int. Ed. 2011, 50, 5192.
[26]
Zhang, Y.-F.; Zhao, H.-W.; Wang, H.; Wei, J.-B.; Shi, Z.-J. Angew. Chem., Int. Ed. 2015, 54, 13686.
[27]
(a) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199.
[27]
(b) Higham, J. I.; Bull, J. A. Org. Biomol. Chem. 2020, 18, 7291.
[27]
(c) Goswami, N.; Bhattacharya, T.; Maiti, D. Nat. Rev. Chem. 2021, 5, 646.
[28]
Yang, K.; Li, Q.; Liu, Y.; Li, G.; Ge, H. J. Am. Chem. Soc. 2016, 138, 12775.
[29]
Li, Y.-H.; Ouyang, Y.; Chekshin, N.; Yu, J.-Q. J. Am. Chem. Soc. 2022, 144, 4727.
[30]
St John-Campbell, S.; White, A. J. P.; Bull, J. A. Org. Lett. 2020, 22, 1807.
[31]
Hong, K.; Park, H.; Yu, J.-Q. ACS Catal. 2017, 7, 6938.
[32]
Pan, L.; Yang, K.; Li, G.; Ge, H. Chem. Commun. 2018, 54, 2759.
[33]
Wang, J.; Dong, C.; Wu, L.; Xu, M.; Lin, J.; Wei, K. Adv. Synth. Catal. 2018, 360 3709.
[34]
(a) Dong, C.; Wu, L.; Yao, J.; Wei, K. Org. Lett. 2019, 21, 2085.
[34]
(b) Cheng, Y.; Zheng, J.; Tian, C.; He, Y.; Zhang, C.; Tan, Q.; An, G.; Li, G. Asian J. Org. Chem. 2019, 8, 526.
[35]
Xu, Y.; Young, M. C.; Wang, C.; Magness, D. M.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 9084.
[36]
Wu, Y.; Chen, Y.-Q.; Liu, T.; Eastgate, M. D.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 14554.
[37]
Yada, A.; Liao, W.; Sato, Y.; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 1073.
[38]
Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
[39]
Le, K. K. A.; Nguyen, H.; Daugulis, O. J. Am. Chem. Soc. 2019, 141, 37, 14728.
[40]
Wasa, M.; Chan, K. S. L.; Zhang, X.-G.; He, J.; Miura, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 18570.
[41]
Wu, K.; Lam, N.; Strassfeld, D. A.; Fan, Z.; Qiao, J. X.; Liu, T.; Stamos, D.; Yu, J.-Q. Angew. Chem., Int. Ed. 2024, 63, e202400509.
[42]
(a) Chen, G.; Gong, W.; Zhuang, Z.; Andr?, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Science 2016, 353, 1023.
[42]
(b) Hill, D. E.; Pei, Q.-l.; Zhang, E.-x.; Gage, J. R.; Yu, J.-Q.; Blackmond, D. G. ACS Catal. 2018, 8, 1528.
[43]
Shang, M.; Feu, K. S.; Vantourout, J. C.; Barton, L. M.; Osswald, H. L.; Kato, N.; Gagaring, K.; McNamara, C. W.; Chen, G.; Hu, L.; Ni, S.; Fernández-Canelas, P.; Chen, M.; Merchant, R. R.; Qin, T.; Schreiber, S. L.; Melillo, B.; Yu, J.-Q.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 8721.
[44]
Andr?, M. S.; Schifferer, L.; Pollok, C. H.; Merten, C.; Goo?en, L. J.; Yu, J.-Q. Chem. Eur. J. 2019, 25, 8503.
[45]
Topczewski, J. J.; Cabrera, P. J.; Saper, N. I.; Sanford, M. S. Nature 2016, 531, 220.
[46]
Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2018, 140, 5599.
[47]
Kapoor, M.; Liu, D.; Young, M. C. J. Am. Chem. Soc. 2018, 140, 6818.
[48]
(a) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.
[48]
(b) He, C.; Whitehurst, W. G.; Gaunt, M. J. Chem 2019, 5, 1031.
[48]
(c) He, C.; Zu, B.; Guo, Y.; Ke, J. Synthesis 2021, 53, 2029.
[48]
(d) Das, J.; Mal, D. K.; Maji, S.; Maiti, D. ACS Catal. 2021, 11, 4205.
[49]
Hu, L.; Meng, G.; Yu, J.-Q. J. Am. Chem. Soc. 2022, 144, 20550.
[50]
Yang, J.-M.; Lin, Y.-K.; Sheng, T.; Hu, L.; Cai, X.-P.; Yu, J.-Q. Science 2023, 380, 639.
[51]
Kang, G.; Strassfeld, D. A.; Sheng, T.; Chen, C.-Y.; Yu, J.-Q. Nature 2023, 618, 519.
[52]
Zhang, T.; Zhang, Z.-Y.; Kang, G.; Sheng, T.; Yan, J.-L.; Yang, Y.-B.; Ouyang, Y.; Yu, J.-Q. Science 2024, 384, 793.
[53]
Hoque, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2023, 62, e202312331.
[54]
Strassfeld, D. A.; Chen, C.-Y.; Park, H. S.; Phan, D. Q.; Yu, J.-Q. Nature 2023, 622, 80.
[55]
Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 3906.
[56]
Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.
[57]
Liu, Y.; Yang, K.; Ge, H. Chem. Sci. 2016, 7, 2804.
[58]
Ding, Y.; Han, Y.-Q.; Wu, L.-S.; Zhou, T.; Yao, Q.-J.; Feng, Y.-L.; Li, Y.; Kong, K.-X.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 14060.
[59]
Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. Angew. Chem., Int. Ed. 2020, 59, 3491.
[60]
Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenh?user, F.; Ackermann, L. Chem. Sci. 2020, 11, 6521.
[61]
Gadde, K.; Bheemireddy, N. R.; Heitk?mper, J.; Nova, A.; Maes, B. U. W. ACS Catal. 2024, 14, 1157.
[62]
Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.
[63]
Landge, V. G.; Parveen, A.; Nandakumar, A.; Balaraman, E. Chem. Commun. 2018, 54, 7483.
[64]
Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
[65]
Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56, 11958.
[66]
Hogg, K. F.; Trowbridge, A.; Alvarez-Pérez, A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8198.
[67]
Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542.
[68]
Ren, Z.; Mo, F.; Dong, G. J. Am. Chem. Soc. 2012, 134, 16991.
[69]
Chen, K.; Zhang, S.-Q.; Jiang, H.-Z.; Xu, J.-W.; Shi, B.-F. Chem. Eur. J. 2015, 21, 3264.
[70]
Shan, G.; Yang, X.; Zong, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 13606.
[71]
Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.
[72]
Bai, H.-Y.; Ma, Z.-G.; Yi, M.; Lin, J.-B.; Zhang, S.-Y. ACS Catal. 2017, 7, 2042.
[73]
Zhu, R.-Y.; Tanaka, K.; Li, G.-C.; He, J.; Fu, H.-Y.; Li, S.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 7067.
[74]
Zhang, Q.; Yin, X.-S.; Chen, K.; Zhang, S.-Q.; Shi, B.-F. J. Am. Chem. Soc. 2015, 137, 8219.
[75]
Mao, Y.-J.; Lou, S.-J.; Hao, H.-Y.; Xu, D.-Q. Angew. Chem., Int. Ed. 2018, 57, 14085.
[76]
Chen, Y.-Q.; Singh, S.; Wu, Y.; Wang, Z.; Hao, W.; Verma, P.; Qiao, J. X.; Sunoj, R. B.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 9966.
[77]
He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[78]
Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[79]
Pan, J.-L.; Li, Q.-Z.; Zhang, T.-Y.; Hou, S.-H.; Kang, J.-C.; Zhang, S.-Y. Chem. Commun. 2016, 52, 13151.
[80]
Vyhivskyi, O.; Kudashev, A.; Miyakoshi, T.; Baudoin, O. Chem. Eur. J. 2021, 27, 1231;
[81]
Zhang, Z.; Wei, F.; Wang, X.; Zhang, Y.. Org. Lett. 2024, 26, 3586.
[82]
Uttry, A.; Mal, S.; van Gemmeren, M. J. Am. Chem. Soc. 2021, 143, 10895.
[83]
Watanabe, A.; Hama, K.; Watanabe, K.; Fujiwara, Y.; Yokoyama, K.; Murata, S.; Takita, R. Angew. Chem., Int. Ed. 2022, 61, e202202779.
[84]
Wang, X.; Sun, Z.; Li, T.; Perveen, S.; Li, P. Green Chem. 2024, 26, 3767.
Outlines

/