REVIEWS

Heterogeneous Catalytic Fixation of Carbon Dioxide for Synthesis of Carbonyl Derivatives

  • Yuyuan Zhang ,
  • Changjie Yang ,
  • Haitao Tang ,
  • Yingming Pan
Expand
  • State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004

Received date: 2024-05-25

  Revised date: 2024-08-21

  Online published: 2024-09-10

Supported by

Guangxi Science and Technology Base and Talent Project (High Level Innovative Talents and Team Training)(Guike AD23026094); National Natural Science Foundation of China(22161008)

Abstract

As an effective way to utilize CO2 resources, multiphase catalytic carbon fixation is of great significance to promote carbon neutrality and carbon peak. The exploration of this reaction is of guiding significance to the establishment of other catalytic systems. This paper reviews the recent progress in the synthesis of a series of carbon dioxide fixed carbonyl derivatives by heterogeneous catalysis in the fields of photocatalysis, electrocatalysis, thermal catalysis, and photothermal catalysis. The synthesis of carbonyl derivatives by different heterogeneous catalysis CO2, including organic carbonates, carbamates and carboxylic acids, is introduced. The reaction mechanism of these reactions is discussed. This provides a reference for the design and realization of the polyphase catalytic fixed CO2 reaction.

Cite this article

Yuyuan Zhang , Changjie Yang , Haitao Tang , Yingming Pan . Heterogeneous Catalytic Fixation of Carbon Dioxide for Synthesis of Carbonyl Derivatives[J]. Chinese Journal of Organic Chemistry, 2024 , 44(10) : 3077 -3090 . DOI: 10.6023/cjoc202405033

References

[1]
Liu, L.-C.; Corma, A. Chem. Rev. 2023, 123, 4855.
[2]
Huang, W.-Y.; Wang, G.-Q.; Li, W.-H.; Li, T.-T.; Ji, G.-J.; Ren, S.-C.; Jiang, M.; Yan, L.; Tang, H.-T.; Pan, Y.-M.; Ding, Y.-J. Chem 2020, 6, 2300.
[3]
Jia, J.-S.; Cao, Y.; Wu, T.-X.; Tao, Y.; Pan, Y.-M.; Huang, F.-P.; Tang, H.-T. ACS Catal. 2021, 11, 6944.
[4]
Kisch, H. Angew. Chem., Int. Ed. 2010, 49, 9588.
[5]
Jaramillo, T. F.; J?rgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.
[6]
Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
[6]
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
[7]
Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328.
[8]
Xie, Y.-Y.; Pan, Y.-M. Green Chem. 2024, DOI: 10.1039/D4GC02829E.
[9]
Pan, Y.-Z.; Qi, X.; Zhu, J.-X.; Wang, Y.-C.; Liang, Y.; Wang, H.-S; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239.
[10]
Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.-P.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67.
[11]
Ertl, G. Angew. Chem., Int. Ed. 2008, 47, 3524.
[12]
Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191.
[13]
Aresta, M.; Dibenedetto, A.; Angelini, A. J. CO2 Util. 2014, 3-4, 65.
[14]
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[15]
Peters, M.; K?hler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216.
[16]
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112.
[17]
Qiao, J.-L.; Liu, Y.-Y.; Hong, F.; Zhang, J.-J. Chem. Soc. Rev. 2014, 43, 631.
[18]
Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19630.
[19]
Fu, X.; Zhang, J.; Kang, Y. React. Chem. Eng. 2021, 6, 612.
[20]
Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695.
[21]
Isse, A. A.; Durante, C.; Gennaro, A. Electrochem. Commun. 2011, 13, 810.
[22]
Zhang, Y.; Yu, S.; Luo, P.; Xu, S.; Zhang, X.; Zhou, H.; Du, J.; Yang, J.; Xin, N.; Kong, Y.; Liu, J.; Chen, B.; Lu, J. R. Soc. Open Sci. 2018, 5, 180897.
[23]
Cao, Y.-M.; Li, D.-Y.; Ding, C.-M.; Ye, S.; Zhang, X.-W.; Chi, H.-B.; Liu, L.-Q.; Liu, Y.; Xiao, J.-P.; Li, C. ACS Catal. 2023, 13, 11902.
[24]
Peng, X.; Karakalos, S. G.; Mustain, W. E. ACS Appl. Mater. Interfaces 2018, 10, 1734.
[25]
Li, Z.-Y.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2022, 80, 199. (in Chinese)
[25]
(李泽洋, 杨宇森, 卫敏, 化学学报, 2022, 80, 199.)
[26]
Jiang, G.-M.; Su, Y.-P.; Li, H.-X.; Chen, Y.-F.; Li, S.; Bu, Y.-B.; Zhang, Z.-T. Appl. Surf. Sci. 2021, 549, 149277.
[27]
Rao, R.-C.; Shao, F.-L.; Dong, X.-Z.; Dong, H.-Z.; Fang, S.; Sun, H.; Ling, Q. Appl. Surf. Sci. 2020, 513, 145771.
[28]
Naqvi, S. T. R.; Shirinfar, B.; Majeed, S.; Najam-Ul-Haq, M.; Hussain, D.; Iqbal, T.; Ahmed, N. Analyst 2018, 143, 5610.
[29]
Guan, A.; Quan, Y.; Chen, Y.; Liu, Z.; Zhang, J.; Kan, M.; Zhang, Q.; Huang, H.; Qian, L.; Zhang, L.; Zheng, G. Chin. J. Catal. 2022, 43, 3134.
[30]
Jiang, Y.-L.; Li, G.-C.; Chen, Q.-S.; Xu, Z.-N.; Lin, S.-S.; Guo, G.-C. Acta Chim. Sinica 2022, 80, 703. (in Chinese)
[30]
(蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪, 化学学报, 2022, 80, 7037.)
[31]
Ren, B.; Wen, G.; Gao, R.; Luo, D.; Zhang, Z.; Qiu, W.; Ma, Q.; Wang, X.; Cui, Y.; Ricardez-Sandoval, L.; Yu, A.; Chen, Z. Nat. Commun. 2022, 13, 2486.
[32]
álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
[33]
Jiang, Y.-L.; Shan, J.-Q.; Wang, P.-T.; Huang, L.-S.; Zheng, Y.; Qiao, S.-Z. ACS Catal. 2023, 13, 3101.
[34]
Hao, Y.; Yan, X.; Liu, X.; Qin, S.; Zhu, Z.; Panchal, B.; Chang, T. J. CO2 Util. 2022, 56, 101867.
[35]
Guo, L.; Zhang, R.; Xiong, Y.; Chang, D.; Zhao, H.; Zhang, W.; Zheng, W.; Chen, J.; Wu, X. Molecules 2020, 25, 3627.
[36]
Dai, X.-Y.; Qi, K.; Liu, C. Carbon 2023, 202, 1.
[37]
Li, D.; Kassymova, M.; Cai, X.; Zang, S.; Jiang, H. Coord. Chem. Rev. 2020, 412, 213262.
[38]
Lu, Q.; Eid, K.; Li, W.; Abdullah, A. M.; Xu, G.; Varma, R. S. Green Chem. 2021, 23, 5394.
[39]
Li, L.; Dai, X.; Chen, D.-L.; Zeng, Y.; Hu, Y.; Lou, D. Angew. Chem., Int. Ed. 2022, 61, 202205839.
[40]
Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energy Environ. Sci. 2022, 15, 880.
[41]
Inoue, T.; Fujishima, A.; Konishi, S. Nature 1979, 277, 637.
[42]
Yuan, T.; Wu, Z.-W.; Zhai, S.-M.; Wang, R.; Wu, S.-T.; Cheng, J.-J.; Zheng, M.-F.; Wang, X.-C. Angew. Chem., Int. Ed. 2023, 62, e20230486.
[43]
Li, X.-J.; Niu, X.-X.; Fu, P.; Song, Y.-R. Appl. Catal. B 2024, 350, 123943.
[44]
Li, L.; Liu, W.-X.; Ying, H.-H.; He, X.; Shang, S.; Zhang, P.; Zhang, X.-D.; Liu, S.-H.; Wang, H.; Xie, Y. CCS Chem. 2024, DOI: 10.31635/ccschem.024.202404189.
[45]
Yuan, S.-B.; Bai, P.; He, Y.; Chen, J.-F.; Zhao, Y.-C.; Li, Y.-D. J. CO2 Util. 2023, 71, 102453.
[46]
Yang, Z.-Y.; Shen, C.-R.; Dong, K.-W. Chin. J. Chem. 2022, 40, 2734.
[47]
Wei, R.-J.; Xie, M.; Xia, R.-Q.; Chen, J.; Hu, H.-J.; Ning, G.-H.; Li, D. J. Am. Chem. Soc. 2023, 145, 22720.
[48]
Shen, Y.-J.; Zheng, Q.-S.; Chen, Z.-N.; Wen, D.-H.; James, H. C.; Xu, X.; Tu, T. Angew. Chem., Int. Ed. 2021, 60, 4125.
[49]
Xu, J.; Xu, H.; Dong, A.-Q.; Zhang, H. Adv. Mater. 2022, 34, 2206991.
[50]
Zhou, X.-Q.; Tang, H.-T.; Cui, F.-H.; Liang, Y.; Li, S.-H.; Pan, Y.-M. Green Chem. 2023, 25, 5024.
[51]
Xiong, T.-K.; Xia, Q.; Zhou, X.-Q.; Li, S.-H.; Cui, F.-H.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Adv. Synth. Catal. 2023, 365, 2183.
[52]
Pan, Y.-Z.; Xia, Q.; Zhu, J.-X.; Wang, Y.-C.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239.
[53]
Jiao, Z.-H.; Zhao, X.-Y.; Zhao, J. Acta Phys.-Chim. Sin. 2023, 39, 2301018.
[54]
Chen, P.-B.; Tang, X.-Y.; Meng, X.-J.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. Green Synth. Catal. 2022, 3, 162.
[55]
Rao, Z.-X.; Chen, P.-B.; Xu, J.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. ChemSusChem 2023, e202300170.
[56]
Chen, P.-B.; Yang, J.-W.; Rao, Z.-X.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. J. Colloid Interf. Sci. 2023, 652, 866.
[57]
Liu, C.-Y.; Xiao, Y.-J.; Wan, W.-R.; Wei, Y. Appl. Catal. B 2023, 325, 122394.
[58]
Zhang, L.-P.; Tu, X.-W.; Chen, Y.-T.; Han, W.-H. Mol. Catal. 2023, 538, 112971.
Outlines

/