ARTICLES

Protecting Group Effects on the Total Syntheses of Several Classes of Natural Products

  • Jiuzhou Yi ,
  • Liang Huo ,
  • Jinyan Chen ,
  • Meng Liu ,
  • Huilin Li ,
  • Xuegong She
Expand
  • State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000

Received date: 2024-06-18

  Revised date: 2024-08-01

  Online published: 2024-09-19

Supported by

National Natural Science Foundation of China(22231003); National Natural Science Foundation of China(22071090); National Natural Science Foundation of China(22171115)

Abstract

The proper utilization of protecting groups plays a pivotal role in the total synethesis of natural products. Recently, in the research on the total synthesis of several polycyclic natural products, it was found that, besides the masking effect on active functional groups, protecting groups brought many other effects to the chemical reactions and route evaluations of the synthesis in the following aspects including leading to unexpected skeletal rearrangement or reorganization, participating the designed reaction to produce unexpected byproducts, and affecting the outcome of stereoselectivity. In response to this, based on recent research cases on the complete synthesis of natural products, how to deal with the impact of protective group effects in specific situations is analyzed, and different solutions including replacing protective groups, directly applying by-products from protective groups, and abandoning the use of protective groups are proposed. These three solutions successfully tackled the probelms in the synthesis, and laid the foundation of final success on the total synthesis of the target molecules.

Cite this article

Jiuzhou Yi , Liang Huo , Jinyan Chen , Meng Liu , Huilin Li , Xuegong She . Protecting Group Effects on the Total Syntheses of Several Classes of Natural Products[J]. Chinese Journal of Organic Chemistry, 2025 , 45(3) : 1030 -1039 . DOI: 10.6023/cjoc202406024

References

[1]
Nicolaou, K. C.; Montagnon, T. Molecules That Changed the World, Weinheim, Wiley-VCH, 2008, pp. 1-385.
[2]
(a) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis, Weinheim, Wiley-VCH, 1996, pp. 1-798.
[2]
(b) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II, Weinheim, WileyVCH, 2003, pp. 1-639.
[3]
Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed., Weinheim, Wiley-VCH, 2006, pp. 1-794.
[4]
(a) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193.
[4]
(b) Hui, C.; Cheng, F.; Pu, F.; Xu, J. Nat. Rev. Chem. 2019, 3, 85.
[5]
Kaburagi, Y.; Kira, K.; Yahata, K.; Iso, K.; Sato, Y.; Matsuura, F.; Ohashi, I.; Matsumoto, Y.; Isomura, M.; Sasaki, T.; Fukuyama, T.; Miyashita, Y.; Azuma, H.; Iida, D.; Ishida, T.; Itano, W.; Matsuda, M.; Matsukura, M.; Murai, N.; Nagao, S.; Seki, M.; Yamamoto, A.; Yamamoto, Y.; Yoneda, N.; Watanabe, Y.; Kamada, A.; Kayano, A.; Tagami, K.; Asano, O.; Owa, T.; Kishi, Y. Org. Lett. 2024, 26, 2837.
[6]
Hu, Y.-J.; Gu, C.-C.; Wang, X.-F.; Min, L.; Li, C.-C. J. Am. Chem. Soc. 2021, 143, 17862.
[7]
Fraga, B. M. Nat. Prod. Rep. 2011, 28, 1580.
[8]
Zhang, J.; Fan, P.; Zhu, R.; Li, R.; Lin, Z.; Sun, B.; Zhang, C.; Zhou, J.; Lou, H. J. Nat. Prod. 2014, 77, 1031.
[9]
He, M.; Yi, J.; Zhao, G.; Chen, P.; Long, D.; Hu, X.; Li, H.; Xie, X.; Wang, X.; She, X. Org. Chem. Front. 2019, 6, 383.
[10]
Yi, J.; He, M.; Zhang, Y.; Yu, P.; Xie, X.; Li, H.; She, X. Org. Lett. 2024, 26, 5146.
[11]
Wong, S.-P.; Gan, C.-Y.; Lim, K.-H.; Ting, K.-N.; Low, Y.-Y.; Kam, T.-S. Org. Lett. 2015, 17, 3628.
[12]
Huo, L.; Yang, Y.; Gao, X.; Chen, W.; She, X.; Cao, X.-P. Org. Lett. 2024, 26, 3801.
[13]
Wang, F. Y.; Jiao, L. Angew. Chem., nt. Ed. 2021, 60, 12732.
[14]
Mander, L. N. Nat. Prod. Rep. 2003, 20, 49.
[15]
Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 44.
[16]
Kim, K. H.; Choi, S. U.; Son, M. W.; Choi, S. Z.; Clardy, J.; Lee, K. R. J. Nat. Prod. 2013, 76, 1376.
[17]
(a) Annand, J. R.; Bruno, P. A.; Mapp, A. K.; Schindler, C. S. Chem. Commun. 2015, 51, 8990.
[17]
(b) Annand, J. R.; Henderson, A. R.; Cole, K. S.; Maurais, A. J.; Becerra, J.; Liu, Y.; Weerapana, E.; Koehler, A. N.; Mapp, A. K.; Schindler, C. S. ACS Med. Chem. Lett. 2020, 11, 1913.
[18]
Wu, M.-J.; Wu, D.-M.; Chen, J.-B.; Zhao, J.-F.; Gong, L.; Gong, Y.-X.; Li, Y.; Yang, X.-D.; Zhang, H. Bioorg. Med. Chem. Lett. 2018, 28, 2543.
[19]
Chen, J.; Yang, Y.; Wu, C.; Huo, L.; Xie, X.; Li, H.; She, X. Org. Lett. 2022, 24, 6402.
[20]
(a) Shi, Q.-W.; Su, X.-H.; Kiyota, H. Chem. Rev. 2008, 108, 4295.
[20]
(b) Vasas, A.; Hohmann, J. Chem. Rev. 2014, 114, 8579.
[20]
(c) Wang, H.-B.; Wang, X.-Y.; Liu, L.-P.; Qin, G.-W.; Kang, T.-G. Chem. Rev. 2015, 115, 2975.
[21]
(a) Wan, L.-S.; Nian, Y.; Ye, C.-J.; Shao, L.-D.; Peng, X.-R.; Geng, C.-A.; Zuo, Z.-L.; Li, X.-N.; Yang, J.; Zhou, M.; Qiu, M.-H. Org. Lett. 2016, 18, 2166.
[21]
(b) Wan, L.-S.; Nian, Y.; Peng, X.-R.; Shao, L.-D.; Li, X.-N.; Yang, J.; Zhou, M.; Qiu, M.-H. Org. Lett. 2018, 20, 3074.
[22]
(a) Zhang, J.; Liu, M.; Wu, C.; Zhao, G.; Chen, P.; Zhou, L.; Xie, X.; Fang, R.; Li, H.; She, X. Angew. Chem., Int. Ed. 2020, 59, 3966.
[22]
(b) Wu, C.; Zhang, J.; Liu, M.; Xie, X.; Li, H.; She, X. Org. Lett. 2023, 25, 7995.
[23]
Liu, M.; Wu, C.; Xie, X.; Li, H.; She, X. Angew. Chem., Int. Ed. 2024, 63, e202400943.
Outlines

/