Chinese Journal of Organic Chemistry >
Visible-Light-Driven Oxidation of Benzylic C—H Bonds Enabled by Anthraquinone in Water
Received date: 2024-08-13
Revised date: 2024-09-16
Online published: 2024-10-11
Supported by
Xi'an Medical University(2023BS30); Shaanxi Provincial Department of Education(24JK0646); National College Students’ Innovation and Entrepreneurship Training Program(202311840007)
An efficient photochemical protocol for the oxidation of alkylarenes to ketones was developed using anthraquinone (AQ) as a organic small molecule photocatalysts, O2 as an oxidant and water as green solvent. The main feature of this method is that visible light, molecular oxygen and water are low-cost, abundance and eco-friendliness in green chemistry. Moreover, the system shows a broad substrate scope and good functional-group tolerance, which can also easily be scaled-up to gram scale. A series of control experiments was conducted to study the influence of superoxide radicals on the reaction, and a reasonable catalytic cycle mechanism was proposed. The mechanism studies revealed that AQ absorbed the light and served as a photosensitizer to promote the transformation of O2 to the highly reactive $\text{O}_{2}^{\centerdot }$ via single electron transfer (SET) process, which then oxidized alkylarenes to ketones.
Key words: visible-light photocatalysis; alkylarene; ketone; anthraquinone; water
Chen Duan , Siyu Shen , Yuqi Zhao , Yue Liu , Xinyu Li , Lizhi Zhang , Wenjing Li . Visible-Light-Driven Oxidation of Benzylic C—H Bonds Enabled by Anthraquinone in Water[J]. Chinese Journal of Organic Chemistry, 2025 , 45(4) : 1352 -1359 . DOI: 10.6023/cjoc202406032
| [1] | (a) Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Eur. J. Med. Chem. 2018, 145, 35. |
| [1] | (b) Erve, J. C. L.; Gauby, S.; Maynard, J. W.; Svensson, M. A.; Tonn, G.; Quinn, K. P. Chem. Res. Toxicol. 2013, 26, 926. |
| [2] | European Food Safety Authority EFSA J. 2013, 11, 3147. |
| [3] | Wang, Y.; Chen, X.; Jin, H.; Wang, Y. Chem.-Eur. J. 2019, 25, 14273. |
| [4] | (a) Zhang, J.; Du, J.; Zhang, C.; Liu, K.; Yu, F.; Yuan, Y.; Duan, B.; Liu, R. Org. Lett. 2022, 24, 1152. |
| [4] | (b) Jaworski, J. N.; McCann, S. D.; Guzei, I. A.; Stahl, S. S. Angew. Chem., Int. Ed. 2017, 56, 3605. |
| [4] | (c) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. |
| [5] | (a) Hruszkewycz, D. P.; Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem. Sci. 2017, 8, 1282. |
| [5] | (b) Sauermann, N.; Meyer, T.; Tian, C.; Ackermann, L. J. Am. Chem. Soc. 2017, 139, 18452. |
| [6] | (a) Wang, J.; Zhang, C.; Ye, X.-Q.; Du, W.; Zeng, S.; Xua, J.-H.; Yin, H. RSC Adv. 2021, 11, 3003. |
| [6] | (b) Nanjo, T.; De Lucca, E. C.; White, M. C. J. Am. Chem. Soc. 2017, 139, 14586. |
| [6] | (c) Chandra, B.; Singh, K. K.; Gupta, S. S. Chem. Sci. 2017, 8, 7545. |
| [6] | (d) Ammann, S. E.; Liu, W.; White, M. C. Angew. Chem., Int. Ed. 2016, 55, 9571. |
| [6] | (e) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135, 14052. |
| [6] | (f) Chen, M. S.; White, M. C. Science 2007, 318, 783. |
| [7] | Olivo, G.; Farinelli, G.; Barbieri, A.; Lanzalunga, O.; Stefano, S. D.; Costas, M. Angew. Chem., Int. Ed. 2017, 56, 16347. |
| [8] | Simmons, E. M.; Hartwig, J. F. Nature 2012, 482, 70. |
| [9] | Liu, K.-J.; Duan, Z.-H.; Zeng, X.-L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 10293. |
| [10] | Bo, C.; Bu, Q.; Liu, J.; Dai, B.; Liu, N. ACS Sustainable Chem. Eng. 2022, 10, 1822. |
| [11] | Wu, J.; Chen, J.; Wang, L.; Zhu, H.; Liu, R.; Song, G.; Feng, C.; Li, Y. Green Chem. 2023, 25, 940. |
| [12] | Niu, K.; Shi, X.; Ding, L.; Liu, Y.; Song, H.; Wang, Q. ChemSusChem 2022, 15, e202102326. |
| [13] | (a) Tang, C.; Qiu, X.; Cheng, Z.; Jiao, N. Chem. Soc. Rev. 2021, 50, 8067. |
| [13] | (b) Cheng, X.; Hu, X.; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251 (in Chinese). |
| [13] | (程骁恺, 胡新根, 陆展, 有机化学, 2017, 37, 251.) |
| [13] | (c) Bian, C.; Singh, A. K.; Niu, L.; Yi. ; Lei, A. Asian J. Org. Chem. 2017, 6, 386. |
| [14] | (a) Li, Z.; Wan, Z.; Wang, W.; Chen, L.; Ji, P. ACS Catal. 2024, 14, 8786. |
| [14] | (b) Zhu, C.-M.; Liang, R.-B.; Xiao, Y.; Zhou, W.; Tong, Q.-X.; Zhong, J.-J. Green Chem. 2023, 25, 960. |
| [14] | (c) Xu, N.; Peng, X.; Luo, C.; Huang, L.; Wang, C.; Chen, Z.; Li, J. Adv. Synth. Catal. 2023, 365, 142. |
| [14] | (d) Li, S.; Tian, D.; Zhao, X.; Yin, Y.; Lee, R.; Jiang, Z. Org. Chem. Front. 2022, 9, 6229. |
| [14] | (e) Uygur, M.; Kuhlmann, J. H.; Pérez-Aguilar, M. C.; Piekarski, D. G.; Manche?o, O. G. Green Chem. 2021, 23, 3392. |
| [14] | (f) Li, S.; Zhu, B.; Lee, R.; Qiao, B.; Jiang, Z. Org. Chem. Front. 2018, 5, 380. |
| [14] | (g) Liu, X.; Lin, L.; Ye, X.; Tan, C.-H.; Jiang, Z. Asian J. Org. Chem. 2017, 6, 422. |
| [15] | Zhang, W.; Gacs, J.; Arends, I. W. C. E.; Hollmann, F. ChemCatChem 2017, 9, 3821. |
| [16] | Zhu, X.; Liu, Y.; Liu, C.; Yang, H.; Fu, H. Green Chem. 2020, 22, 4357. |
| [17] | Ma, S.; Ma, J.-M.; Cui, J.-W.; Rao, C.-H.; Jia, M.-Z.; Zhang, J. Green Chem. 2022, 24, 2492. |
| [18] | (a) Zhao, J.; Sun, H.; Lu, Yue.; Li, J.; Yu, Z.; Zhu, H.; Ma, C.; Meng, Q.; Peng, X. Green Chem. 2022, 24, 8503. |
| [18] | (b) Zhou, C.; Lei, T.; Wei, X.-Z.; Ye, C.; Liu, Z.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2020, 142, 16805. |
| [19] | (a) Liang, Z.; Yu, Y.; Zhang, L.; Xue, G.; Liu, M.; Zhang, Y.; Huang, M.; Cai, L.; Cai, S. Org. Lett. 2024, 26, 298. |
| [19] | (b) Saini, S.; Shafiur, R. K.; Gour, N. K.; Deka, R. C.; Jain, S. L. Green Chem. 2022, 24, 3644. |
| [19] | (c) Cervantes-González, J.; Vosburg, D. A.; Mora-Rodriguez, S.; Vázquez, M. A.; Zepeda, L. G.; Gómez, C. V.; Lagunas-Rivera, S. ChemCatChem 2020, 12, 3811. |
| [20] | (a) Li, W.; Li, S.; Luo, L.; Ge, Y.; Xu, J.; Zheng, X.; Yuan, M.; Li, R.; Chen, H.; Fu, H. Green Chem. 2021, 23, 3649. |
| [20] | (b) Li, J.; Bao, W.; Tang, Z.; Guo, B.; Zhang, S.; Liu, H.; Huang, S.; Zhang, Y.; Rao, Y. Green Chem. 2019, 21, 6073. |
| [20] | (c) Yi, H.; Bian, C.; Hu, X.; Niu, L.; Lei, A. Chem. Commun. 2015, 51, 14046. |
| [21] | (a) Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 2536. |
| [21] | (b) Xie, P.; Xue, C.; Du, D.; Shi, S. Org. Biomol. Chem. 2021, 19, 6781. |
| [21] | (c) Yu, T.; Guo, M.; Wen, S.; Zhao, R.; Wang, J.; Sun, Y.; Liu, Q.; Zhou, H. RSC Adv. 2021, 11, 13848. |
/
| 〈 |
|
〉 |