ARTICLES

Photoinduced Difluoromethylation/Cyclization of 2-Aryl Indoles with HCF2SO2Na

  • Jie Jiang ,
  • Jiali Li ,
  • Ruohan Pan ,
  • Yu Chen ,
  • Jiale Liu ,
  • Yucai Tang
Expand
  • Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering,Hunan University of Arts and Science, Changde, Hunan 415000

Received date: 2024-09-09

  Revised date: 2024-11-08

  Online published: 2024-12-06

Supported by

Scientific Research Foundation of Hunan Provincial Education Department(23B0650); Key Research Project of Hunan University of Arts and Sciences(24ZZ02)

Abstract

Difluoromethyl compounds are widely found in natural products, bioactive molecule and pharmaceuticals. A visible-light induced difluoromethylation/cyclization of 2-aryl indoles is described to construct indolo[2,1-a]isoquinolin-6(5H)-one derivatives using the inexpensive and easy-to-handle HCF2SO2Na as an HCF2 sources. Diverse difluoromethylated indolo[2,1-a]isoquinolines were readily obtained in moderate to good yields. Mechanistic studies demonstrate that the reaction may involve a radical process.

Cite this article

Jie Jiang , Jiali Li , Ruohan Pan , Yu Chen , Jiale Liu , Yucai Tang . Photoinduced Difluoromethylation/Cyclization of 2-Aryl Indoles with HCF2SO2Na[J]. Chinese Journal of Organic Chemistry, 2025 , 45(4) : 1239 -1248 . DOI: 10.6023/cjoc202409008

References

[1]
Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
[2]
Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929.
[3]
Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
[4]
(a) Tang, X. J.; Zhang, Z.; Dolbier, W. R. Chem.-Eur. J. 2015, 21, 18961.
[4]
(b) Wei, S.; Le, S.; Lei, Z.; Zhou, L.; Zhang, Z.; Dolbier, Jr, W. R. Org. Biomol. Chem. 2022, 20, 2064.
[5]
(a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem., Int. Ed. 2016, 55, 1479.
[5]
(b) Yu, J.; Lin, J.-H.; Cao, Y.-C.; Xiao, J.-C. Org. Chem. Front. 2019, 6, 3580.
[5]
(c) Zhang, Z.-Q.; Sang, Y.-Q.; Wang, C.-Q.; Dai, P.; Xue, X.-S.; Piper, J. L.; Peng, Z.-H.; Ma, J.-A.; Zhang, F.-G.; Wu, J. J. Am. Chem. Soc. 2022, 144, 14288.
[6]
Yang, J.; Zhu, S.; Wang, F.; Qing, F. L.; Chu, L. Angew. Chem., Int. Ed. 2021, 60, 4300.
[7]
(a) Meyer, C. F.; Hell, S. M.; Misale, A.; Trabanco, A. A.; Gouverneur, V. Angew. Chem., nt. Ed. 2019, 58, 8829.
[7]
(b) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Liu, H.-Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
[7]
(c) Gui, Q.-W.; Teng, F.; Yang, H.; Xun, C.; Huang, W.-J.; Lu, Z.-Q.; Zhu, M.-X.; Ouyang, W.-T.; He, W.-M. Chem. Asian J. 2022, 17, e202101139.
[8]
Xu, H.-H.; Song, J.; Xu, H.-C. ChemSusChem 2019, 12, 3060.
[9]
Zhu, X.; Zhang, M.; Shen, L.; Su, W. J. Org. Chem. 2024, 89, 8828.
[10]
(a) Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Chem. Commun. 2016, 52, 13413.
[10]
(b) Jin, H.-X.; Zhu, Y.; Zhang, J.; Zhang, Y.-P.; Zhu, L.; Long, L.; Chen, Z.; Luo, H.; Yu, D. Org. Chem. Front. 2024, 11, 5762.
[11]
(a) Chen, X.; Ouyang, W.-T.; Li, X.; He, W.-M. Chin. J. Org. Chem. 2023, 43, 4213 (in Chinese).
[11]
(陈祥, 欧阳文韬, 李潇, 何卫民, 有机化学, 2023, 43, 4213.)
[11]
(b) Wu, J.; Zong, Y.; Zhao, C.; Yan, Q.; Sun, L.; Li, Y.; Zhao, J.; Ge, Y.; Li, Z. Org. Biomol. Chem. 2019, 17, 794.
[11]
(c) Kumar Jha, A.; Kumar, V.; Perumandla, S. K. ChemPhotoChem 2024, 8, e202300288.
[12]
Yuan, X.; Duan, X.; Cui, Y.-S.; Sun, Q.; Qin, L.-Z.; Zhang, X.-P.; Liu, J.; Wu, M.-Y.; Qiu, J.-K.; Guo, K. Org. Lett. 2021, 23, 1950.
[13]
(a) Singh, S.; Pathak, N.; Fatima, E.; Negi, A. S. Eur. J. Med. Chem. 2021, 226, 113839.
[13]
(b) Bhadra, K.; Kumar, G. S. Med. Res. Rev., 2011, 31, 821.
[13]
(c) Plazas, E.; Avila M, M. C.; Mun?oz, D. R.; Cuca S, L. E.; Cuca, S. Pharmacol. Res. 2022, 177, 106126.
[13]
(d) Tsyrenova, B.; Khrustalev, V.; Nenajdenko, V. J. Org. Chem., 2020, 85, 7024.
[13]
(e) Li, C.; Wang, Y.; Wu, S.; Zhuang, W.; Huang, Z.; Zhou, L.; Li, Y.; Chen, M.; You, J. Org. Lett. 2022, 24, 175.
[13]
(f) Yi, R.; He, W. Chin. J. Org. Chem. 2023, 43, 2985 (in Chinese).
[13]
(易荣楠, 何卫民, 有机化学, 2023, 43, 2985.)
[13]
(g) Lu, Y.-H.; Wu, C.; Hou, J.-C.; Wu, Z.-L.; Zhou, M.-H.; Huang, X.-J.; He, W.-M. ACS Catal. 2023, 13, 13071.
[13]
(h) Song, H.-Y.; Jiang, J.; Wu, C.; Hou, J.-C.; Lu, Y.-H.; Wang, K.-L.; Yang, T.-B.; He, W.-M. Green Chem. 2023, 25, 3292.
[13]
(i) Ji, H.-T.; Wang, K.-L.; Ouyang, W.-T.; Luo, Q.-X.; Li, H.-X.; He, W.-M. Green Chem. 2023, 25, 7983.
[14]
(a) Shen, Z.-J.; Huang, B.; Ma, N.; Yao, L.; Yang, C.; Guo, L.; Xia, W. Adv. Synth. Catal. 2021, 363, 1944.
[14]
(b) Zhai, S.; Qiu, S.; Yang, S.; Hua, B.; Niu, Y.; Han, C.; Yu, Y.; Li, Y.; Zhai, H. Chin. Chem. Lett. 2022, 33, 276.
[14]
(c) Wei, Y.-L.; Chen, J.-Q.; Sun, B.; Xu, P.-F. Chem. Commun. 2019, 55, 5922.
[14]
(d) Hu, X.-Y.; Xu, H.-F.; Chen, Q.; Pan, Y.-L.; Chen, J.-Z. Org. Biomol. Chem. 2021, 19, 10376.
[14]
(e) Cui, H.; Niu, C.; Zhang, C. J. Org. Chem. 2021, 86, 15835.
[14]
(f) Zhao, P.; Wang, Y.; Wang, X.; Zhuang, D.; Yan, R. J. Org. Chem. 2022, 87, 9056.
[14]
(g) Jiang, S.-S.; Xiao, Y.-T.; Wu, Y.-C.; Luo, S.-Z.; Song, R.-J.; Li, J.-H. Org. Biomol. Chem. 2020, 18, 4843.
[15]
(a) Tang, Y.; Yang, Y.; Zhou, Q.; Duan, J.; Yang, B.; Du, C.; He, Y. Org. Biomol. Chem. 2023, 21, 5254.
[15]
(b) Tang, Y.; Duan, J.; Yang, B.; He, Y.; Du, C.; Zhang, X. Org. Biomol. Chem. 2023, 21, 8152.
[16]
Mei, Y.; Zhao, L.; Liu, Q.; Ruan, S.; Wang, L.; Li, P. Green Chem. 2020, 22, 2270.
Outlines

/