化学学报 ›› 2020, Vol. 78 ›› Issue (8): 719-724.DOI: 10.6023/A20050162 上一篇    下一篇

研究展望

开环聚合诱导自组装的挑战与展望

江金辉a, 朱云卿a,b, 杜建忠a,b   

  1. a 同济大学 材料科学与工程学院高分子材料系 上海 201804;
    b 同济大学医学院附属第十人民医院 骨科 上海 200072
  • 投稿日期:2020-05-11 出版日期:2020-08-15 发布日期:2020-06-22
  • 通讯作者: 朱云卿, 杜建忠 E-mail:1019zhuyq@tongji.edu.cn;jzdu@tongji.edu.cn
  • 作者简介:江金辉,同济大学博士研究生(导师:杜建忠教授),主要研究方向为NCA-PISA.
    朱云卿,同济大学研究员,上海市浦江人才,同济大学青年百人.帝国理工大学博士,牛津大学、帝国理工大学博士后.主要研究领域为可再生可降解高分子材料、生物医用高分子材料.
    杜建忠,同济大学教授,国家杰出青年科学基金获得者,英国皇家化学会会士,中国化学会高分子学科委员会委员,《高分子学报》编委、《Biomacromolecules》顾问编委.中科院化学所博士,谢菲尔德大学、剑桥大学博士后,洪堡学者.主要研究领域为高分子化学与物理、生物医用高分子材料.
  • 基金资助:
    项目受国家杰出青年科学基金(No.21925505)、国家自然科学基金(Nos.21674081,51903190)和上海市浦江人才计划(No.19PJ1409600)资助.

Challenges and Perspective on Ring-Opening Polymerization-Induced Self-Assembly

Jiang Jinhuia, Zhu Yunqinga,b, Du Jianzhonga,b   

  1. a Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;
    b Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
  • Received:2020-05-11 Online:2020-08-15 Published:2020-06-22
  • Supported by:
    Project supported by the National Science Fund for Distinguished Young Scholars (No. 21925505), the National Natural Science Foundation of China (Nos. 21674081, 51903190) and Shanghai Pujiang Program (No. 19PJ1409600).

聚合诱导自组装(PISA)是一种新兴的纳米粒子制备技术,它集聚合与组装过程于一体,可在高固含量条件下进行,因此备受青睐.此外,通过改变嵌段聚合度以及固含量等参数,可以精确地控制纳米粒子的形貌,实现从球形胶束到空心囊泡的形貌转变.然而,受限于适用于PISA体系的聚合方法和单体种类,其发展也受到了一定的限制.目前,PISA主要基于可逆加成-断裂链转移聚合(RAFT),其在聚合诱导自组装机理、形貌控制、结构表征等方面的研究成果,对于高分子化学其他领域具有重要的参考价值.然而,由于RAFT聚合诱导自组装(RAFT-PISA)体系中适用的单体往往局限于(甲基)丙烯酸酯类和苯乙烯类,导致RAFT-PISA制备的纳米粒子限于其碳-碳主链的基本结构难以生物降解,因此生物医用前景并不乐观.为了克服以上缺陷,开环聚合诱导自组装(ROPISA)应运而生,主要包括开环易位聚合诱导自组装(ROMPISA)、氨基酸-N-羧基-环内酸酐开环聚合诱导自组装(NCA-PISA)及自由基开环聚合诱导自组装(rROPISA).由于ROMPISA体系对诸多功能性基团表现出化学惰性,从而为多功能纳米粒子的原位制备提供了新的方法;而rROPISA和NCA-PISA则使得生物可降解纳米粒子的原位制备成为可能.作为PISA领域崭新的研究方向,ROPISA不仅将新聚合方法引入了PISA体系,而且突破了以往PISA难以制备可降解纳米粒子的瓶颈,为PISA技术在生物医药领域的应用架起了桥梁.作者简要总结了ROPISA的发展现状,着重分析并提出了该领域面临的挑战,最后从机理研究、单体设计及转化应用等方面对ROPISA的发展前景进行了展望.

关键词: 聚合诱导自组装(PISA), 开环聚合诱导自组装(ROPISA), 开环易位聚合诱导自组装(ROMPISA), 氨基酸-N-羧基-环内酸酐开环聚合诱导自组装(NCA-PISA), 自由基开环聚合诱导自组装(rROPISA)

Polymerization-induced self-assembly (PISA) is one of the most cutting-edge strategies towards the preparation of nanoparticles with a range of morphologies (spheres, worms, vesicles, etc.) as it combines polymerization and self-assembly and thus can afford high solid contents in various media. Additionally, nanoparticle morphology can be accurately targeted by adjusting the degree of polymerization of the soluble stabilizer block and the insoluble core-forming block, as well as solid contents in PISA formula. Unfortunately, this highly efficient approach is limited to specific polymerization methods, and hence specific monomer types. Currently, PISA based on reversible addition-fragmentation chain-transfer polymerization (RAFT) has been well-established for the in situ preparation of a range of nanoparticle morphologies. This method is relatively mature especially in the mechanism exploration, morphological control, and characterization, which has important impact to other fields of polymer chemistry. However, methacrylates, acrylates, and styrene monomers are often essential for reversible addition-fragmentation chain-transfer polymerization-induced self-assembly (RAFT-PISA), leading to the carbon-carbon backbone, which normally produces nonbiodegradable structures. These drawbacks are detrimental in terms of biomedical applications. Fortunately, new PISA strategies based on ring-opening polymerizations, including ring-opening metathesis polymerization-induced self-assembly (ROMPISA), ring-opening polymerization of N-carboxy- anhydride-induced self-assembly (NCA-PISA) and radical ring-opening polymerization-induced self-assembly (rROPISA), have been developed to overcome these problems. ROMPISA has proven to be an efficient approach for fabricating multifunctional nanoparticles due to its great tolerance for many functional groups. Biodegradable nanoparticles, including spheres and vesicles, have been successfully prepared by rROPISA and NCA-PISA. Therefore, ring-opening PISA (ROPISA) provides not only new polymerization methods but also new strategies for fabricating biodegradable nanoparticles with a range of monomer species. In this perspective, we briefly summarize the current progress and analyze the challenges of ROPISA. Finally, we provide a perspective for the further development of ROPISA addressed on the mechanism, monomers and applications, which provides an insight into ROPISA as well as some suggestions and directions for its future research.

Key words: polymerization-induced self-assembly (PISA), ring-opening polymerization-induced self-assembly (ROPISA), ring-opening metathesis polymerization-induced self-assembly (ROMPISA), ring-opening polymerization of N-carboxy-anhydride-induced self-assembly (NCA-PISA), radical ring-opening polymerization-induced self-assembly (rROPISA)