化学学报    下一篇

综述

中空纳米结构在表界面化学能源存储中的应用

毕如一a,b, 毛丹a,c, 王江艳a,c, 于然波b, 王丹a,c   

  1. a 中国科学院过程工程研究所 生化工程国家重点实验室 北京 100190;
    b 北京科技大学 冶金与生态工程学院 北京 100083;
    c 中国科学院大学 北京 100049
  • 发布日期:2020-08-15
  • 通讯作者: 王江艳, 于然波, 王丹 E-mail:jywang@ipe.ac.cn;ranboyu@ustb.edu.cn;danwang@ipe.ac.cn
  • 基金资助:
    项目受国家自然科学基金(No.21820102002,21590795,51661165013).和中国科学院科研装备研制项目资助

Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application

Bi Ruyia,b, Mao Dana,c, Wang Jiangyana,c, Yu Ranbob, Wang Dana,c   

  1. a State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190;
    b School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083;
    c University of Chinese Academy of Sciences, Beijing 100049
  • Published:2020-08-15
  • Supported by:
    Project supported by the National Natural Science Foundation of China (No. 21820102002, 21590795, 51661165013), and The Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201623).

中空纳米结构因具有有效比表面积大、传输路径短、缓冲性能好等优势,在能源转换和存储领域受到人们的广泛关注,本文综述了中空纳米结构材料在以超级电容器为代表的表界面化学能源存储领域的研究进展.首先介绍了表界面化学能源存储的机理和挑战;其次详细讨论了中空材料的微观结构参数对表界面化学能源存储装置性能的影响;然后系统概述了近年来研究者如何利用中空纳米结构解决表界面化学能源存储中的问题并优化电容器性能;最后,展望了中空纳米结构在表界面化学能源存储中面临的挑战和未来的发展方向.

关键词: 中空纳米结构, 表界面, 超级电容器, 比电容

Hollow nanostructures garner tremendous interest in the area of energy conversion and storage, owning to its large surface area, facilitated transport path and good buffering capability. In this paper, we summarize the recent research on hollow nanostructures with controllable structure and morphology for surface/interface chemical energy storage. First, we introduce the charge storage mechanism and challenges of surface/interface chemical energy storage, mainly including supercapacitor. Subsequently, we discuss the influence of structure parameters of hollow nanostructures on the performance of surface/interface chemical energy storage device in detail. Afterwards, we systematically outline the recent applications of hollow nanostructures as electrode materials for supercapacitors. By adopting hollow nanostructures, the specific capacitance, cycle stability and rate capability of supercapacitors can be greatly improved. Finally, the emergent challenges and future development directions in hollow nanostructures for surface/interface chemical energy storage are provided.

Key words: hollow nanostructure, surface/interface, supercapacitor, specific capacitance