Acta Chim. Sinica ›› 2015, Vol. 73 ›› Issue (2): 126-130.DOI: 10.6023/A14120836 Previous Articles     Next Articles

Article

基于单独MBA凝胶纤维的RAFT聚合制备聚合物微米管

张亚清a, 唐黎明a, 李麒b   

  1. a 清华大学化工系 先进材料教育部重点实验室 北京 100084;
    b 北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
  • 收稿日期:2014-12-03 出版日期:2015-02-14 发布日期:2015-01-29
  • 通讯作者: 唐黎明, tanglm@mail.tsinghua.edu.cn; Tel: 010-62782148 E-mail:tanglm@mail.tsinghua.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos. 21174079, 20874055)和国家973计划(No. 2014CB932202)资助.

Preparation of Polymer Microtubes via RAFT Polymerization of Sole MBA Xerogel Fibers

Zhang Yaqinga, Tang Liminga, Li Qib   

  1. a Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    b Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2014-12-03 Online:2015-02-14 Published:2015-01-29
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21174079, 20874055) and the 973 Program (No. 2014CB932202).

The influence of gelation temperature on the size of MBA xerogel fibers was studied. The results indicated that the average diameter of MBA fibers became smaller as the decrease of gelation temperature, and the MBA fibers with average diameter of 1.1 μm were obtained at gelation temperature of -25 ℃. Without comonomer, the small sized MBA fibers with diameter of 1.1 μm were used as both templates and monomer source for preparing polymer microtubes via reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer tubes with well-shaped morphology and self-supporting ability were obtained in relatively high yield. The influence of various reaction conditions on the polymerization was investigated, which revealed that the amount of RAFT reagent, the amount of initiator and reaction temperature could affect both the morphology and the yield of the products. The morphology and composition of polymer microtubes were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectrometer, respectively. The thermogravimetric analysis indicated high thermal stability of the product.

Key words: RAFT polymerization, MBA xerogel fiber, polymer microtube, morphology