Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (8): 1002-1014.DOI: 10.6023/A23040147 Previous Articles     Next Articles



王晓a,*(), 王星文a, 肖乐辉b,*()   

  1. a 南开大学 化学学院 天津 300071
    b 中南大学 化学化工学院 长沙 410083
  • 投稿日期:2023-04-20 发布日期:2023-09-14
  • 作者简介:

    王晓, 2017年本科毕业于南京师范大学, 2022年博士毕业于南开大学, 师从肖乐辉教授, 现任南开大学科研助理, 主要从事单分子荧光成像、单颗粒纳米催化方向的研究.

    王星文, 南开大学在读硕士, 主要从事单分子荧光成像、荧光探针及色谱填料合成方向的研究.

    肖乐辉, 现任中南大学特聘教授, 博士生导师, 国家自然科学基金优秀青年基金获得者, 主持多项国家自然科学基金面上课题, 在国际顶尖期刊发表SCI论文80余篇, 发现了等离激元热点诱导的快速晶格重排规律, 开创性提出了金属异质结模型用于光催化体系热载流子的高效传递, 近年来主要围绕分子识别、动态示踪以及单分子反应开展研究工作.

  • 基金资助:
    项目受国家自然科学基金(22174079); 项目受国家自然科学基金(21974073)

Nanocatalytic Mechanisms Investigated by Single Molecule Fluorescence Imaging at the Single-Particle Level

Xiao Wanga(), Xingwen Wanga, Lehui Xiaob()   

  1. a College of Chemistry, Nankai University, Tianjin 300071
    b College of Chemistry and Chemical Engineering, Central South University, Changsha 410083
  • Received:2023-04-20 Published:2023-09-14
  • Contact: *E-mail:;
  • Supported by:
    National Natural Science Foundation of China(22174079); National Natural Science Foundation of China(21974073)

With the ever-increasing demands for energy and declining reserves of fossil fuels, efficient use of fossil fuels and energy extraction from alternative raw materials are critical to the sustainable future of humanity. Catalysis is one of the key technologies capable of helping address this energy challenge. Nanocatalysts are an integral part of catalysis technology, and they can catalyze chemical transformation for petroleum processing and energy conversions, which are more efficient than their bulk materials. With the rapid development of nanoscience, new nanocatalysts and novel catalytic properties continue to emerge. Tremendous work has been done in characterizing the catalytic properties of nanoparticles at the ensemble level. However, due to heterogeneous properties of nanoparticles in size, morphology or surface composition, traditional ensemble methods can only provide averaged behavior of numerous nanoparticles. Therefore, it is difficult to determine the reliable structure-activity relationship for individual nanoparticles. In addition, owing to the surface structural reconstruction, the active sites of nanocatalysts are variable under catalysis. Revealing the dynamic evolution of active sites is helpful to understand the process and mechanism of catalytic reaction. Consequently, developing a direct approach to study the nanocatalysis at the single-particle level and in real-time with sufficient spatiotemporal resolution is highly demanding. Recently, due to the single-molecule sensitivity and high spatiotemporal resolution, single-molecule fluorescence imaging (SMFI) has been proved to be an effective tool for studying the heterogeneous nanocatalysts at the single-particle level. By adopting fluorogenic reactions and monitoring the fluorescence signal of a product, the reaction process on a single nanoparticle can be followed in real-time at single-turnover resolution under steady-state reaction kinetics. In this review, we discuss recent processes of SMFI in investigating nanocatalysis at the single-particle level. The discussion focuses on the development and application of SMFI in probing catalytic mechanisms, including the size effect, facet effect, surface defects, plasmonic effect, activation energy, bimetallic effect, nanoconfined effect and catalytic communication. Finally, challenges and prospects of the SMFI for investigating nanocatalysis are put forward.

Key words: single-molecule fluorescence, single-particle, spatiotemporal resolution, nanocatalytic mechanisms, structure-property relationship