Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (9): 833-847.DOI: 10.6023/A20050167 Previous Articles Next Articles
Account
封博谞, 庄小东
投稿日期:
2020-05-15
发布日期:
2020-06-29
通讯作者:
庄小东
E-mail:zhuang@sjtu.edu.cn
作者简介:
封博谞,硕士毕业于南开大学化学学院,现为上海交通大学化学化工学院在读博士研究生,目前的研究方向为二维软物质与介熵材料的合成方法学开发;庄小东,毕业于华东理工大学(学士2006/博士2011),现为上海交通大学高分子系教授.长期致力于二维软物质及其介熵材料的可控制备,并基于第一性原理计算研究结构与性能之间的关系.曾获国家自然科学基金优秀青年基金资助(2017)、国际先进材料学会年度金奖(2019)、中国化学会元素周期表年中国青年化学家称号(2019)、英国皇家化学会新兴科学家称号(2019)、教育部自然科学奖(2019)、上海市自然科学奖(2010)、全国百篇优秀博士论文提名(2014).
基金资助:
Feng Boxu, Zhuang Xiaodong
Received:
2020-05-15
Published:
2020-06-29
Supported by:
Share
Feng Boxu, Zhuang Xiaodong. Carbon-Enriched meso-Entropy Materials: from Theory to Cases[J]. Acta Chimica Sinica, 2020, 78(9): 833-847.
[1] de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842. [2] Cowie, J. M. G.; Arrighi, V. Polymers:Chemistry and Physics of Modern Materials, CRC press, New York, 2007. [3] Smalley, R. E. Angew. Chem., Int. Ed. 1997, 36, 1594. [4] Heeger, A. Chem. Soc. Rev. 2010, 39, 2352. [5] Geim, A.; Novoselov, K. Nat. Phys. 2010, 6, 836. [6] Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787. [7] Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157. [8] Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Adv. Mater 2019, 31, 1802922. [9] Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464. [10] Dodiuk, H.; Goodman, S. H. Handbook of Thermoset Plastics:1. Introduction, William Andrew, Boston, 2013. [11] Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem., Int. Ed. 2009, 48, 1030. [12] Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, C.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.) [13] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater 2018, 30, 1704303. [14] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. [15] James, S. L. Chem. Soc. Rev. 2003, 32, 276. [16] Zhang, X.-R.; Wang, X.; Fan, W.-D.; Sun, D.-F. Chin. J. Chem. 2020, 38, 509. [17] Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.) [18] Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.) [19] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754. [20] Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.) [21] Inagaki, M.; Radovic, L. R. Carbon 2002, 40, 2279. [22] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. [23] James, D. K.; Tour, J. M. Acc. Chem. Res. 2013, 46, 2307. [24] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. [25] Bethune, D.; Kiang, C. H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605. [26] Zhu, S.; Xu, G. Nanoscale 2010, 2, 2538. [27] Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Inorg. Chim. Acta 2017, 468, 49. [28] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744. [29] Jensen, W. B. J. Chem. Edu. 2006, 83, 838. [30] Petrucci, R. H.; Harwood, W. S.; Herring, F. G. General Chemistry:Principles and Modern Applications, Vol. 1, Prentice Hall, New York, 2002. [31] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. [32] Yazyev, O. V.; Louie, S. G. Phys. Rev. B 2010, 81, 195420. [33] Liu, Y.; Yakobson, B. I. Nano Lett. 2010, 10, 2178. [34] Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. Nature 2011, 469, 389. [35] Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350. [36] Fultz, B. Prog. Mater. Sci. 2010, 55, 247. [37] Butler, K. T.; Walsh, A.; Cheetham, A. K.; Kieslich, G. Chem. Sci. 2016, 7, 6316. [38] Wei, J. Ind. Eng. Chem. Res. 1999, 38, 5019. [39] Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325. [40] Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D. Macromolecules 1984, 17, 1370. [41] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. [42] Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538. [43] Nyman, J.; Day, G. M. CrystEngComm 2015, 17, 5154. [44] Doak, J. W.; Wolverton, C.; Ozoliņš, V. Phys. Rev. B 2015, 92, 174306. [45] Rhein, R. K.; Dodge, P. C.; Chen, M.-H.; Titus, M. S.; Pollock, T. M.; Van der Ven, A. Phys. Rev. B 2015, 92, 174117. [46] Vela, S.; Mota, F.; Deumal, M.; Suizu, R.; Shuku, Y.; Mizuno, A.; Awaga, K.; Shiga, M.; Novoa, J. J.; Ribas-Arino, J. Nat. Commun. 2014, 5, 1. [47] Ma, F.; Zheng, H.; Sun, Y.; Yang, D.; Xu, K.; Chu, P. K. Appl. Phys. Lett. 2012, 101, 111904. [48] Pascal, T. A.; Goddard, W. A.; Jung, Y. Proc. Natl. Acad. Sci. 2011, 108, 11794. [49] Chia-en, A. C.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. 2007, 104, 1534. [50] Besara, T.; Jain, P.; Dalal, N. S.; Kuhns, P. L.; Reyes, A. P.; Kroto, H. W.; Cheetham, A. K. Proc. Natl. Acad. Sci. 2011, 108, 6828. [51] Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601. [52] Silberberg, M. Principles of General Chemistry, McGraw-Hill Education, New York, 2012. [53] Navrotsky, A.; Kleppa, O. J. Inorg. Nucl. Chem. 1968, 30, 479. [54] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90. [55] Gyorffy, B. Phys. Rev. B 1972, 5, 2382. [56] Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353. [57] Sanchez, J. M.; Ducastelle, F.; Gratias, D. Phys. A 1984, 128, 334. [58] Nielsen, M. A.; Chuang, I. L. Phys. Today 2001, 54, 60. [59] Trucco, E. Bull. Math. Biophys. 1956, 18, 129. [60] Lin, S.-K. Mol. Online 1996, 1, 57. [61] Agrafiotis, D. K. J. Chem. Inf. Comput. Sci. 1997, 37, 576. [62] Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2000, 40, 796. [63] Godden, J. W.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2001, 41, 1060. [64] Graham, D. J. J. Chem. Inf. Comput. Sci. 2002, 42, 215. [65] Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. J. Chem. Inf. Model. 2009, 49, 1655. [66] Graham, D. J.; Malarkey, C.; Schulmerich, M. V. J. Chem. Inf. Comput. Sci. 2004, 44, 1601. [67] Tarko, L. J. Math. Chem. 2011, 49, 2330. [68] Zhdanov, Y. A. Information Entropy in Organic Chemistry, Rostov University, Rostov, Russia, 1979, p. 56. [69] Karreman, G. Bull. Math. Biophys. 1955, 17, 279. [70] Levine, R. Annu. Rev. Phys. Chem. 1978, 29, 59. [71] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90. [72] Hô, M.; Schmider, H. L.; Weaver, D. F.; Smith Jr., V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376. [73] Kobozev, N. Russ. J. Phys. Chem. A 1966, 40, 281. [74] Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, 1988, p. 240. [75] García-Garibay, M. A. Photochem. Photobiol. Sci. 2010, 9, 1574. [76] Nosonovsky, M. Philos. Trans. R. Soc., A 2010, 368, 4755. [77] Li, H.-L. College Physics 2004, 12, 37(in Chinese). (李鹤龄, 大学物理, 2004, 12, 37.) [78] Hartley, R. V. L. Bell Syst. Tech. J. 1928, 7, 535. [79] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. [80] Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Vacuum 2009, 84, 152. [81] Torrens, F.; Castellano, G. Microelectron. J. 2007, 38, 1109. [82] Sabirov, D. S.; Ōsawa, E. J. Chem. Inf. Model. 2015, 55, 1576. [83] Kohn, W. Rev. Mod. Phys. 1999, 71, S59. [84] Goldstein, J. Emergence 1999, 1, 49. [85] Chen, X.; Gu, Z.-C.; Wen, X.-G. Phys. Rev. B 2010, 82, 155138. [86] Holzhey, C.; Larsen, F.; Wilczek, F. Nucl. Phys. B 1994, 424, 443. [87] Calabrese, P.; Cardy, J. J. Stat. Mech.:Theory Exp. 2004, 2004, P06002. [88] Kitaev, A.; Preskill, J. Phys. Rev. Lett. 2006, 96, 110404. [89] Levin, M.; Wen, X.-G. Phys. Rev. Lett. 2006, 96, 110405. [90] Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. Fortschr. Phys. 2016, 64, 516. [91] Moore, G.; Seiberg, N. Nucl. Phys. B 1989, 313, 16. [92] Verlinde, E. Nucl. Phys. B 1988, 300, 360. [93] Fendley, P.; Fisher, M. P. A.; Nayak, C. J. Stat. Phys. 2007, 126, 1111. [94] Jaud, D. Ph.D. Dissertation, Ludwig-Maximilians-Universität München, München, 2002. [95] Jeong, B. W.; Ihm, J.; Lee, G.-D. Phys. Rev. B 2008, 78, 165403. [96] Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Science 2012, 337, 209. [97] Jin, Y.; Cheng, J.; Varma-Nair, M.; Liang, G.; Fu, Y.; Wunderlich, B.; Xiang, X. D.; Mostovoy, R.; Zettl, A. K. J. Phys. Chem. 1992, 96, 5151. [98] Atkins, P.; De Paula, J.; Friedman, R. Quanta, matter, and change:a molecular approach to physical chemistry, Oxford University Press, Oxford, 2009. [99] Grochala, W. Angew. Chem., Int. Ed. 2014, 53, 3680. [100] Vasiliev, O. O.; Muratov, V. B.; Kulikov, L. M.; Garbuz, V. V.; Duda, T. I. J. Superhard Mater. 2015, 37, 388. [101] Muratov, V. B.; Vasil'ev, O. O.; Kulikov, L. M.; Garbuz, V. V.; Nesterenko, Y. V.; Duda, T. I. J. Superhard Mater. 2012, 34, 173. [102] Lebedev, B. V.; Bykova, T. A.; Lobach, A. S. J. Therm. Anal. Calorim. 2000, 62, 257. [103] Zhang, Y.; Zhao, J.; Fang, Y.; Liu, Y.; Zhao, X. Nanoscale 2018, 10, 17824. [104] Mermin, N. D. Phys. Rev. 1968, 176, 250. [105] Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1307. [106] Le Doussal, P.; Radzihovsky, L. Phys. Rev. Lett. 1992, 69, 1209. [107] Iijima, S. Nature 1991, 354, 56. [108] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. [109] Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5, 3186. [110] Tian, W.-C.; Zhang, X.-Y.; Chen, Z.-Q.; Ji, H.-Y. Recent Pat. Nanotechnol. 2016, 10, 3. [111] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. [112] Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351. [113] Berman, D.; Erdemir, A.; Sumant, A. V. Mater. Today 2014, 17, 31. [114] Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Mater. Today 2012, 15, 98. [115] Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. C. Nanoscale 2011, 3, 2868. [116] Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713. [117] Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096. [118] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. [119] Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes:Their Properties and Applications, Acedemic Press, San Diego, 1996. [120] Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 6551. [121] Zandonella, C. Nature 2001, 410, 734. [122] Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880. [123] Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. 2007, 104, 13574. [124] Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62. [125] Ebbesen, T.; Takada, T. Carbon 1995, 33, 973. [126] Kosaka, M.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Chem. Phys. Lett. 1995, 233, 47. [127] Dunlap, B. I. Phys. Rev. B 1992, 46, 1933. [128] Dunlap, B. I. Phys. Rev. B 1994, 49, 5643. [129] Wei, D.; Liu, Y. Adv. Mater 2008, 20, 2815. [130] Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Nat. Mater. 2005, 4, 663. [131] Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273. [132] Pan, B. C.; Yang, W. S.; Yang, J. Phys. Rev. B 2000, 62, 12652. [133] Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063. [134] Feng, B.; Zhuang, X. Faraday Discuss. 2019, DOI:10.1039/C9FD00115H. [135] Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205. [136] Sidman, J. W.; McClure, D. S. J. Chem. Phys. 1956, 24, 757. [137] Tétreault, N.; Muthyala, R. S.; Liu, R. S.; Steer, R. P. J. Phys. Chem. A 1999, 103, 2524. [138] Mitchell, D. R.; Gillispie, G. D. J. Phys. Chem. 1989, 93, 4390. [139] Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721. [140] Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095. [141] Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322. [142] Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656. [143] Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 4483. [144] Dias, J. R. J. Phys. Org. Chem.2007, 20, 395. [145] Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335. [146] Hou, I. C.-Y.; Shetti, V.; Huang, S.-L.; Liu, K.-L.; Chao, C.-Y.; Lin, S.-C.; Lin, Y.-J.; Chen, L.-Y.; Luh, T.-Y. Org. Chem. Front. 2017, 4, 773. [147] Sun, Q.; Hou, I. C.-Y.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Fasel, R. Chem. Commun. 2019, 55, 13466. [148] Jessop, P. G. Green Chem. 2011, 13, 1391. [149] Ghasimi, S.; Landfester, K.; Zhang, K. A. ChemCatChem 2016, 8, 694. [150] Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102. [151] Ghasimi, S.; Bretschneider, S. A.; Huang, W.; Landfester, K.; Zhang, K. A. Adv. Sci. 2017, 4, 1700101. [152] Kishida, K.; Horike, S.; Nakagawa, K.; Kitagawa, S. Chem. Lett. 2012, 41, 425. [153] Anderson Jr., A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941. [154] Barman, S.; Khutia, A.; Koitz, R.; Blacque, O.; Furukawa, H.; Iannuzzi, M.; Yaghi, O. M.; Janiak, C.; Hutter, J.; Berke, H. J. Mater. Chem. A 2014, 2, 18823. [155] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. [156] Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350. [157] Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904. [158] Nakagawa, K.; Tanaka, D.; Horike, S.; Shimomura, S.; Higuchi, M.; Kitagawa, S. Chem. Commun. 2010, 46, 4258. [159] Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300. [160] Sun, S.; Zhuang, X.; Wang, L.; Zhang, B.; Ding, J.; Zhang, F.; Chen, Y. J. Mater. Chem. C 2017, 5, 2223. [161] Yang, C.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X.; Cánovas, E.; Cuniberti, G.; Bonn, M.; Feng, X. Angew. Chem., Int. Ed. 2017, 56, 3920. |
[1] | Yaning Li, Xiaoyan Wang, Yong Tang. The Regulation of Stereoselectivity in Radical Polymerization★ [J]. Acta Chimica Sinica, 2024, 82(2): 213-225. |
[2] | Jian Zheng, Jin-Hong Lin, Ji-Chang Xiao. Difluorocarbene-based Trifluoromethylthiolation of Aryl and Alkenyl Iodides [J]. Acta Chimica Sinica, 2024, 82(2): 115-118. |
[3] | Cheng-Qiang Wang, Chao Feng. Applications of Nucleophilic Fluorine Sources in the Selective Fluorofunctionalization of Unsaturated Carbon-Carbon Bonds [J]. Acta Chimica Sinica, 2024, 82(2): 160-170. |
[4] | Jinglin Yi, Mao Chen. Photo-Induced Copolymerization of Chlorotrifluoroethylene and Methyl Isopropenyl Ether★ [J]. Acta Chimica Sinica, 2024, 82(2): 126-131. |
[5] | Ying Wei, Jiacheng Wang, Yue Li, Tao Wang, Shuwei Ma, Linghai Xie. Research Progress of Carbon-carbon Bond Linked Two-dimensional Covalent-Organic Frameworks [J]. Acta Chimica Sinica, 2024, 82(1): 75-102. |
[6] | Xiangguo Teng, Liangwei Zhang, Xiaoyu Han, Guowei Li, Jicui Dai. Study on the Polyamine Thin Film Composite Membrane for Vanadium Battery [J]. Acta Chimica Sinica, 2024, 82(1): 16-25. |
[7] | Huagao Wang, Qunfeng Cheng. Recent Advances in the Nacre-inspired Layered Polymer Nanocomposites by Ice Templating Technique★ [J]. Acta Chimica Sinica, 2023, 81(9): 1231-1239. |
[8] | Lingxuan Jia, Zepang Zhan, Zihan He, Chong-an Di, Daoben Zhu. Advances and Perspectives on Organic Materials for Neuroelectronic Interface Devices★ [J]. Acta Chimica Sinica, 2023, 81(9): 1175-1186. |
[9] | Yi Wan, Jianghua He, Yuetao Zhang. Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs★ [J]. Acta Chimica Sinica, 2023, 81(9): 1215-1230. |
[10] | Ye Tian, Duanhui Si, Shuiying Gao, Rong Cao. Ultra-Long Organic Room Temperature Phosphorescence of Phthalic Acid Derivative Modified Polymer★ [J]. Acta Chimica Sinica, 2023, 81(9): 1129-1134. |
[11] | Xiao Wang, Xingwen Wang, Lehui Xiao. Nanocatalytic Mechanisms Investigated by Single Molecule Fluorescence Imaging at the Single-Particle Level [J]. Acta Chimica Sinica, 2023, 81(8): 1002-1014. |
[12] | Lefei Yu, Xing-Qi Yao, Jianbo Wang. Recent Advance of Diazo Compounds in Polymer Synthesis★ [J]. Acta Chimica Sinica, 2023, 81(8): 1015-1029. |
[13] | Zhixiang Yuan, Hao Zhang, Sijia Hu, Botao Zhang, Jianjun Zhang, Guanglei Cui. Research Progress of Ion-initiated in situ Generated Solid Polymer Electrolytes for High-safety Lithium Batteries★ [J]. Acta Chimica Sinica, 2023, 81(8): 1064-1080. |
[14] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[15] | Jia Liu, Guanghai Chen, Yiqun Chen, Jietao Jiang, Xiao Xiao, Qiang Wu, Lijun Yang, Xizhang Wang, Zheng Hu. Boosting the Supercapacitance Performance of Mesostructured Carbon Nanocages by Enlarging Pore Sizes via Carbothermal Reduction★ [J]. Acta Chimica Sinica, 2023, 81(7): 709-716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||