Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 857-868.DOI: 10.6023/A23040149 Previous Articles    



马超凡a,b, 徐伟a,b, 刘巍a,b, 徐昌晖a,b, 沙菁㛃a,b,*()   

  1. a 东南大学机械工程学院 南京 211189
    b 东南大学 江苏省微纳生物医学仪器设计与制造重点实验室 南京 211189
  • 投稿日期:2023-04-20 发布日期:2023-05-31
  • 作者简介:

    马超凡, 男, 东南大学机械工程学院博士研究生. 主要从事生物纳米孔蛋白质检测与构象分析的研究.

    沙菁㛃, 女, 东南大学机械工程学院设计工程系, 教授, 博士生导师. 主要研究方向为微纳流体系统、微纳传感器设计. 先后主持或完成包括4项国家自然科学基金(其中一项优秀结题)、参与1项973计划、1项国家自然科学基金重点项目. 近几年, 在JACS、ACS Nano、Small、Nanoscale、Analytical Chemistry、ACS Sensors、Nanotechnology、Appl. Phys. Lett.等微纳领域权威国际期刊发表SCI论文50余篇(含JCR一区、二区论文近50篇, 影响因子超10.0论文6篇). 申请发明专利18项, 已经获得授权13项. 中国机械工程学会高级会员、ASME会员、长期担任《Lab on a Chip》、《Nanotechnology》、《BIOTECHNOLOGY AND BIOENGINEERING》、《中国科学》等期刊的审稿人.

  • 基金资助:
    国家自然科学基金(52075099); 国家自然科学基金(52035003)

Proactive Manipulation Techniques for Protein Transport at Confined Nanoscale

Chaofan Maa,b, Wei Xua,b, Wei Liua,b, Changhui Xua,b, Jingjie Shaa,b()   

  1. a School of Mechanical Engineering, Southeast University, Nanjing 211189
    b Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University,Nanjing 211189
  • Received:2023-04-20 Published:2023-05-31
  • Contact: *E-mail:
  • Supported by:
    National Natural Science Foundation of China(52075099); National Natural Science Foundation of China(52035003)

Proteins are important components of human cells and tissues and are closely related to numerous metabolic activities, and some small changes in them may trigger major diseases in the human body. Therefore, protein detection is an important topic in the field of biochemistry. Nanopore technology is capable of real-time protein detection at the single molecule level or even at the single amino acid level, and is expected to be one of the lowest costs and most efficient protein detection methods. However, when using nanopores to detect proteins, the experimental conditions and detection strategy make the protein residence time in the nanopore too short to clearly reflect more detailed biological information from the electrical signal captured by the protein. The critical solution to this problem lies in controlling the transport rate of proteins through the nanopore to meet the bandwidth of the sensor device. In this paper, the active manipulation techniques of protein transport in nanopores are reviewed from the perspectives of external force field competition, internal force field interaction, hydrophilic interaction, and spatial resistance effect, with the aim of improving the capture frequency of proteins by nanopores and prolonging the residence time of proteins in nanopores to achieve high-resolution protein detection, fully reveal the conformational change mechanism of protein molecules, reaction kinetics, and even realize protein sequencing, etc. Finally, the great challenges and development trends of nanopore sensing technology for protein detection are described in detail.

Key words: protein detection, nanopore, manipulation method, residence time, nanoscale transport