Acta Chimica Sinica ›› 2008, Vol. 66 ›› Issue (16): 1863-1868. Previous Articles     Next Articles


张富春*,a,b 张志勇a,c 张威虎a,b 阎军峰c 贠江妮c   

  1. (a中国科学院西安光学精密机械研究所 西安 710068)
    (b延安大学物理与电子信息学院 延安 716000)
    (c西北大学信息科学与技术学院 西安 710127)
  • 投稿日期:2007-10-28 修回日期:2008-03-24 发布日期:2008-08-28
  • 通讯作者: 张富春

The First-Principle Calculation of Electronic Structure and Optical Properties of In2O3

ZHANG, Fu-Chun *,a,b ZHANG, Zhi-Yong a,c ZHANG, Wei-Hu a,b  YAN, Jun-Feng c YUN, Jiang-Ni c   

  1. (a Xi’an Institute of Optics and Precision Mechanics, Acadecmia sinicChinse Academy of Sciencesa, Xi’an 710068)
    (b College of Physics & Electronic Information, Yan’an University, Yan’an 716000)
    (c Information sScience and tTechnology Institution, Northwest University, Xi’an 710127)
  • Received:2007-10-28 Revised:2008-03-24 Published:2008-08-28
  • Contact: ZHANG, Fu-Chun

The electronic structures and the optical response functions of In2O3 are were calculated by using a first-principles ultra-soft pseudo-potential approach of the plane wave based upon the density functional theory(DFT), and the relationships between the electronic structures and optical properties are were investigated. The dielectric functions, reflectance spectra, energy-loss function Im dominated by electron inter-band transitions are were analyzed in terms of the precisely calculated band structure and density of state. The properties of chemistry and physics are were studied by the difference charge density. The calculated results indicate that the optical transmittance of In2O3 is higher than 85% in the visible region, and can prepare transparent conductive Ooxide thin films can be prepared. Furthermore, the calculated conclusions offer theory theoretical data for the design and application of optoelectronics materials of In2O3, and also enable more precise monitoring and controlling during the growth of In2O3 materials as to be possible.

Key words: In2O3, optical propertiesy, electronic structure, the first-principle