Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (6): 2310-2318.DOI: 10.6023/cjoc202010010 Previous Articles Next Articles
ARTICLES
收稿日期:
2020-10-09
修回日期:
2020-12-28
发布日期:
2021-03-25
通讯作者:
刘巨艳
基金资助:
Received:
2020-10-09
Revised:
2020-12-28
Published:
2021-03-25
Contact:
Juyan Liu
Supported by:
Share
Juyan Liu, Congying Zhao. Lactic Acid-Catalyzed Transamidation Reactions of Carboxamides with Amines[J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2310-2318.
Entry | Catalyst/additive or solvent | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | None | 24 | 40 | Trace |
2 | Citric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 50 |
3 | D/L-Malic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 53 |
4 | D/L-Tartaric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 46 |
5 | Gluconic acid (10 mol%) | 10 | 40 | 64 |
6 | Ethyl lactate (10 mol%)/H2O (1 equiv.) | 10 | 40 | 76 |
7 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 95 |
8 | (±)-Lactic acid (10 mol%)/H2O (2 mL) | 10 | 40 | 61 |
9 | (±)-Lactic acid (10 mol%)/Toluene (2 mL) | 10 | 40 | 49 |
10 | (±)-Lactic acid (10 mol%)/DMF (2 mL) | 10 | 40 | 56 |
11 | (±)-Lactic acid (10 mol%)/DMSO (2 mL) | 10 | 40 | 59 |
12 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 25 | 30 |
13 | (±)-Lactic acid (20 mol%)/H2O (1 equiv.) | 10 | 40 | 90 |
14 | H2O (1 equiv.) | 10 | 40 | <5 |
Entry | Catalyst/additive or solvent | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|
1 | None | 24 | 40 | Trace |
2 | Citric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 50 |
3 | D/L-Malic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 53 |
4 | D/L-Tartaric acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 46 |
5 | Gluconic acid (10 mol%) | 10 | 40 | 64 |
6 | Ethyl lactate (10 mol%)/H2O (1 equiv.) | 10 | 40 | 76 |
7 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 40 | 95 |
8 | (±)-Lactic acid (10 mol%)/H2O (2 mL) | 10 | 40 | 61 |
9 | (±)-Lactic acid (10 mol%)/Toluene (2 mL) | 10 | 40 | 49 |
10 | (±)-Lactic acid (10 mol%)/DMF (2 mL) | 10 | 40 | 56 |
11 | (±)-Lactic acid (10 mol%)/DMSO (2 mL) | 10 | 40 | 59 |
12 | (±)-Lactic acid (10 mol%)/H2O (1 equiv.) | 10 | 25 | 30 |
13 | (±)-Lactic acid (20 mol%)/H2O (1 equiv.) | 10 | 40 | 90 |
14 | H2O (1 equiv.) | 10 | 40 | <5 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | | | | 5 | 80 | 95 |
2 | | | | 7 | 150 | 91 |
3 | | | | 4 | 75 | 96 |
4 | | | | 10 | 40 | 95 |
5 | | | | 15 | 100 | 79 |
6 | | | | 10 | 150 | 87 |
7 | | | | 19 | 100 | 83 |
8 | | | | 19 | 100 | 84 |
9 | | | | 19 | 100 | 91 |
10 | | | | 12.5 | 40 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
11 | | | | 8 | 110 | 97 |
12 | | | | 2 | 140 | 95 |
13 | | | | 10 | 110 | 81 |
14 | | | | 6 | 140 | 89 |
15 | | | | 14 | 140 | 88 |
16 | | | | 16 | 140 | 87 |
17 | | | | 20 | 150 | 82 |
18 | | | | 14 | 120 | 90 |
19 | | | | 13.5 | 140 | 94 |
20 | | | | 11 | 130 | 97 |
21 | | | | 6 | 140 | 88 |
22 | | | | 10 | 140 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
23 | | | | 12.5 | 140 | 72 |
24 | | | | 14 | 140 | 78 |
25 | | | | 12 | 140 | 76 |
26 | | | | 12 | 140 | 73 |
27 | | | — | 12 | 140 | — |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
---|---|---|---|---|---|---|
1 | | | | 5 | 80 | 95 |
2 | | | | 7 | 150 | 91 |
3 | | | | 4 | 75 | 96 |
4 | | | | 10 | 40 | 95 |
5 | | | | 15 | 100 | 79 |
6 | | | | 10 | 150 | 87 |
7 | | | | 19 | 100 | 83 |
8 | | | | 19 | 100 | 84 |
9 | | | | 19 | 100 | 91 |
10 | | | | 12.5 | 40 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
11 | | | | 8 | 110 | 97 |
12 | | | | 2 | 140 | 95 |
13 | | | | 10 | 110 | 81 |
14 | | | | 6 | 140 | 89 |
15 | | | | 14 | 140 | 88 |
16 | | | | 16 | 140 | 87 |
17 | | | | 20 | 150 | 82 |
18 | | | | 14 | 120 | 90 |
19 | | | | 13.5 | 140 | 94 |
20 | | | | 11 | 130 | 97 |
21 | | | | 6 | 140 | 88 |
22 | | | | 10 | 140 | 82 |
Entry | Amide | Amine | Product | Time/h | Temp./℃ | Yieldb/% |
23 | | | | 12.5 | 140 | 72 |
24 | | | | 14 | 140 | 78 |
25 | | | | 12 | 140 | 76 |
26 | | | | 12 | 140 | 73 |
27 | | | — | 12 | 140 | — |
Entry | Catalyst (loading) | Time/h | Yielda/% | Ref. |
---|---|---|---|---|
1 | Lactic acid (10 mol%) | 11 | 97 | — |
2 | H2NOH•HCl (10 mol%) | 11 | 20 | [18] |
3 | Sulfated tungstate (10 mol%) | 11 | 86 | [15] |
4 | B(OH)3 (10 mol%) | 11 | 34 | [17] |
5 | Fe(NO3)3•9H2O (10 mol%) | 11 | 46 | [14] |
6 | Benzoic acid (10 mol%) | 11 | 13 | [19] |
7 | L-Proline (10 mol%) | 11 | 82 | [20] |
8 | Benzotriazole (10 mol%) | 11 | 83 | [21] |
9 | Chitosan (10 mol%) | 11 | NR | [22] |
Entry | Catalyst (loading) | Time/h | Yielda/% | Ref. |
---|---|---|---|---|
1 | Lactic acid (10 mol%) | 11 | 97 | — |
2 | H2NOH•HCl (10 mol%) | 11 | 20 | [18] |
3 | Sulfated tungstate (10 mol%) | 11 | 86 | [15] |
4 | B(OH)3 (10 mol%) | 11 | 34 | [17] |
5 | Fe(NO3)3•9H2O (10 mol%) | 11 | 46 | [14] |
6 | Benzoic acid (10 mol%) | 11 | 13 | [19] |
7 | L-Proline (10 mol%) | 11 | 82 | [20] |
8 | Benzotriazole (10 mol%) | 11 | 83 | [21] |
9 | Chitosan (10 mol%) | 11 | NR | [22] |
[1] |
Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,2337.
|
[2] |
Constable, D. J. C. Green Chem. 2007, 9,411.
|
[3] |
Wildman, S. A.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1999, 39,868.
|
[4] |
Bhattacharya, S. K.; Andrews, K.; Beveridge, R.; Cameron, K. O.; Chen, C.; Dunn, M.; Fernando, D. P.; Gao, H.; Hepworth, D.; Jackson, V. M.; Khot, V.; Kong, J.; Kosa, R. E.; Lapham, K.; Loria, P. M.; Londregan, A. T.; McClure, K. F.; Orr, S. T. M.; Patel, J.; Rose, C.; Saenz, J.; Stock, I. A.; Storer, G.; Van Volkenburg, M.; Vrieze, D.; Wang, G.; Xiao, J.; Zhang, Y. ACS Med. Chem. Lett. 2014, 5,474.
|
[5] |
McCoull, W.; Barton, P.; Brown, A.; Bowker, S.; Cameron, J.; Clarke, D.; Davies, R.; Dossetter, A.; Ertan, A.; Fenwick, M.; Green, C.; Holmes, J.; Martin, N.; Masters, D.; Moore, J.; Newcombe, N.; Newton, C.; Pointon, H.; Robb, G. R.; Sheldon, C.; Stokes, S.; Morgan, D. J. Med. Chem. 2014, 57,6128.
|
[6] |
(a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,10827.
|
(b) Larock, R. C. Comprehensive Organic Transformations, Wiley-VCH, Weinheim, 1999.
|
|
(c) Bailey, P. D.; Collier, I. D.; Morgan, K. M. Comprehensive Organic Functional Group Transformations, Vol. 5, Elsevier, Cambridge, 1995, p.257.
|
|
(d) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38,606.
|
|
(e) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20,140.
|
|
[7] |
(a) Cossy, J.; Pale-Grosdemange, C. Tetrahedron Lett. 1989, 30,2771.
|
(b) Gooben, L. J.; Ohlmann, D. M.; Lange, P. P. Synthesis 2009,160.
|
|
(c) Comerford, J. W.; Clark, J. H.; Macquarrie, D. J.; Breeden, S. W. Chem. Commun. 2009,2562.
|
|
(d) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61,4196.
|
|
(e) Maki, T.; Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63,8645.
|
|
(f) Arnold, K.; Davies, B.; Herault, D.; Whiting, A. Angew. Chem., nt. Ed. 2008, 47,2673.
|
|
(g) Hosseini-Sarvari, M.; Sodagar, E.; Doroodmand, M. M. J. Org. Chem. 2011, 76,2853.
|
|
(h) Komura, K.; Nakano, Y.; Koketsu, M. Green Chem. 2011, 13,828.
|
|
(i) Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2016, 81,11548.
|
|
[8] |
(a) Beste, L. F.; Houtz, R. C. J. Polym. Sci., Part A: Polym. Chem. 1952, 8,395.
|
(b) Miller, I. K. J. Polym. Sci., Polym. Chem. Ed. 1976, 14,1403.
|
|
(c) McKinney, R. J. US 5302756, 1994.
|
|
(d) McKinney, R. J. US 5395974, 1995.
|
|
(e) Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59,4035.
|
|
(f) Suggs, J. W.; Pires, R. M. Tetrahedron Lett. 1997, 38,2227.
|
|
[9] |
(a) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,10003.
|
(b) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130,647.
|
|
(c) Kissounko, D. A.; Hoerter, J. M.; Guzei, L. A.; Cui, Q.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129,1776.
|
|
(d) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128,5177.
|
|
(e) Kissounko, D. A.; Guzei, L. A.; Gellman, S. H.; Stahl, S. S. Organometallics 2005, 24,5208.
|
|
(f) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125,3422.
|
|
[10] |
Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128,16406.
|
[11] |
Zhang, M.; Imm, S.; Neubert, B. S. L.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2012, 51,3905.
|
[12] |
Shi, M.; Cui, S. C. Synth. Commun. 2005, 35,2847.
|
[13] |
Tamura, M.; Tonomura, T.; Shimizu, K.; Satsuma, A. Green Chem. 2012, 14,717.
|
[14] |
Becerra-Figueroa, L.; Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2014, 79,4544.
|
[15] |
Pathare, S. P.; Jain, A. K. H.; Akamanchi, K. G. RSC Adv. 2013, 3,7697.
|
[16] |
Ali, M. A.; Siddiki, S. M. A. H.; Kon, K.; Shimizu, K.-I. Tetrahedron Lett. 2014, 55,1316.
|
[17] |
Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14,3202.
|
[18] |
Allen, C. L.; Atkinson, B. N.; Williams, J. M. J. Angew. Chem., Int. Ed. 2012, 51,1383.
|
[19] |
Wu, J.-W.; Wu, Y.-D.; Dai, J.-J.; Xu, H.-J. Adv. Synth. Catal. 2014, 356,2429.
|
[20] |
(a) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15,1496.
|
(b) Yang, X.; Fan, L. L.; Xue, Y. RSC Adv. 2014, 4,30108.
|
|
[21] |
Nguyen, T. B.; Ermolenko, L.; Dau, M. E. T. H.; Al-Mourabit, A. Heterocycles 2014, 88,403.
|
[22] |
Nageswara, Rao, S.; Chandra, Mohan, D.; Adimurthy, S. Green Chem. 2014, 16,4122.
|
[23] |
Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B. F. Energy Environ. Sci. 2013, 6,1415.
|
[24] |
Maki-Arvela, P.; Simakova, I. L.; Salmi, T.; Murzin, D. Y. Chem. Rev. 2014, 114,1909.
|
[25] |
Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. ACS Sustainable Chem. Eng. 2017, 5,5224.
|
[26] |
Lan, K.; Xu, S.; Li, J.; Hu, C. ACS Omega 2019, 4,10571.
|
[27] |
Han, X.; Li, L.; Wei, C.; Zhang, J.; Bao, J. J. Agric. Food Chem. 2019, 67,7082.
|
[28] |
Lamers, B. A. G.; Genabeek, B.; Hennissen, J.; de Waal, B. F. M.; Palmans, A. R. A.; Meijer, E. W. Macromolecules 2019, 52,1200.
|
[29] |
Yang, J.; Tana, J.-N.; Gu, Y. Green Chem. 2012, 14,3304.
|
[30] |
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M. T.; Lashkari, M. J. Chin. Chem. Soc. 2017, 64,1071.
|
[31] |
(a) Zhao, C. Y.; Liu, J. Y.; Wang, Y.; Zhao, X. J.; Yuan, B.; Yue, M. M. Synth. Commun. 2014, 44,827.
|
(b) Yue, M. M.; Liu, J. Y.; Wang, Y.; Yuan, B. Chin. J. Org. Chem. 2014, 34,190(in Chinese).
|
|
(岳闽敏, 刘巨艳, 王英, 袁斌, 有机化学, 2014, 34,190.)
|
|
(c) Zhang, L. J.; Liu, J. Y.; Wang, Y. Chin. J. Org. Chem. 2013, 33,339(in Chinese).
|
|
(张丽君, 刘巨艳, 王英, 有机化学, 2013, 33,339.)
|
|
(d) Huang, H. J.; Liu, J. Y.; Ma, E. Z.; Cao, Y. Y. Chin. J. Org. Chem. 2015, 35,2372(in Chinese).
|
|
(黄海静, 刘巨艳, 马恩忠, 曹映玉, 有机化学, 2015, 35,2372.)
|
|
(e) Liu, J. Y.; Huang, H. J.; Jiao, D. Q. Chin. J. Org. Chem. 2017, 37,1808(in Chinese).
|
|
(刘巨艳, 黄海静, 焦德全, 有机化学, 2017, 37,1808.)
|
|
(f) Fang, Z. X.; Liu, J. Y.; Qiao, Y. H. Chin. J. Org. Chem. 2018, 38,1985(in Chinese).
|
|
(房智兴, 刘巨艳, 乔艳红, 有机化学, 2018, 38,1985.)
|
|
[32] |
(a) Fuentes de Arriba, A.L.; Seisdedos, D. G.; Simons, L.; Alcazar, V.; Raposo, C.; Moran, J. R. J. Org. Chem. 2010, 75,8303.
|
(b) Thomas, M.; Clarhaut, J.; Tranoy-Opalinski, I.; Gesson, J. P.; Roche, J.; Rapot, S. Bioorg. Med. Chem. 2008, 16,8109.
|
|
(c) Willis, M. C.; Snell, R. H.; Fletcher, A. J.; Woodward, R. L. Org. Lett. 2006, 8,5089.
|
[1] | Danfeng Ye, Hao Chen, Zhiyuan Liu, Chuanhu Lei. Transamidation of N-Benzyl-N-Boc-amides under Transition Metal-Free and Base-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1658-1669. |
[2] | Hai Ma, Guanghao Yu, Feng Sui, Miyi Yang, Li Liu, Huijie Li, Feng Li, Qinghe Zhao. Triethylamine-Catalyzed Cascade Reaction of γ-Hydroxy-α,β-unsaturated Ketones with Trifluoromethyl Ketones via Hemiketal Intermediates [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1614-1621. |
[3] | Qi Wang, Boran Zhu, Guang Yang, Xiantao Ma, Qing Xu. Selective Synthesis of Unsymmetrical N-Heteroaryl Thioethers byBase-Free Direct Multi-Component Reaction [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1193-1199. |
[4] | Li Anbang, Li Zhongshan, Zhao Yang, Yao Tingting, Cheng Jingli, Zhao Jinhao. Design, Synthesis and Antifungal Activity of Novel Pyrazole-Thiophene Carboxamide Derivatives [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2836-2844. |
[5] | Wei Kailun, Shi Ruijing, Jiang Lin, Miao Chengxia, Li Ying. Design, Synthesis and Biological Activities Evaluation of N-(Substitutedbenzoyl)-N'-4,7-dimethoxy-[1,2,4]-triazolo[1,5-c]pyrimidine (Thio)ureas [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2127-2134. |
[6] | Zhu Zhongzhen, Qiao Yu, Zhang Zihao, Gu Mingzhen, Wang Jin, Gao Zhiyu, Guo Wenhao, Liu Mingming, Li Rong. Design, Synthesis and Antitumor Evaluation of Novel Small Molecule Extracellular Regulated Protein Kinase (ERK) Inhibitors [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1983-1990. |
[7] | Shi Yanhua, Zhang Shuai, Wan Fuxian, Sun Changxing, Jiang Lin. Synthesis, Fungicidal Activity and Molecular Docking Study of Novel N-[2-((Substitutedphenyl)amino)pyridin-3-yl]-pyrimidine-4-carboxamides [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1948-1954. |
[8] | Li Zhifeng, Wang Wenpeng, Wang Xicun, Quan Zhengjun. Mechanism of Synthesis of Phosphinecarboxamides by Reaction of Sodium Phosphaethynolate Anion and Amines under Acid-Free Conditions: Density Functional Theory Investigation [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1563-1570. |
[9] | Liu Tianbao, Peng Na, Wang Panpan, Peng Yanfen, Gui Meifang, Zhang Min. A New Method for Synthesis of Naphtho[2,1-d]thiazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1355-1360. |
[10] | Liu Yaozong, Xu Pengfei, Ma Jianjun, Li Xiaoming, Liang Ruiyuan, Teng Zhijun. Bifunctional Thioureas Catalyzed Asymmetric Michael Addition of 1-Acetylindolin-3-ones to β,γ-Unsaturated α-Keto Esters [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1378-1383. |
[11] | Zhong Liangkun, Jiang Tao, Zhang Fan, Fu Qing, Liu Xinghai, Xu Tianming, Ding Chengrong, Chen Jie, Yuan Jing, Tan Chengxia. Synthesis and Insecticidal Activity of 3-Arylisoxazoline-pyrazole-5-carboxamide Derivatives [J]. Chin. J. Org. Chem., 2019, 39(9): 2655-2662. |
[12] | Bai Bing, Wang Long, Yang Jing, Cai Lili, Liu Qianjin, Xi Gaolei, Zhao Zhiwei, Mao Duobin, Chen Zhifei. Asymmetric Conjugate Addition of 1,3-Diketone to Nitroalkenes Catalyzed by Bifunctional Thiourea-Amide Organocatalysts [J]. Chin. J. Org. Chem., 2019, 39(4): 1053-1063. |
[13] | Geng Rui, Zhao Yu, Li Yihao, Liu Xinlei, Wang Ming'an. Synthesis and Fungicidal Activity of Novel Pyrazole-4-carbox-amide Compounds Containing Tertiary Alcohol Moiety [J]. Chinese Journal of Organic Chemistry, 2019, 39(12): 3574-3582. |
[14] | Wu Yan, Wang Shan, Zhang Hailing, Chen Rui, He Shuhua. Cesium-Catalyzed N-Carboxamidation of Indoles for Synthesis of Indole-1-carboxamides [J]. Chinese Journal of Organic Chemistry, 2019, 39(12): 3567-3573. |
[15] | Liu Tianbao, Peng Yanfen, Gui Meifang, Zhang Min. Metal-Free Rapid Synthesis of 2-Aroylamino Naphtho[1, 2-d]thiazoles [J]. Chinese Journal of Organic Chemistry, 2019, 39(11): 3199-3206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||