化学学报 ›› 2017, Vol. 75 ›› Issue (2): 163-172.DOI: 10.6023/A16080428 上一篇    下一篇

所属专题: 先进电池材料

综述

钠离子电池用碳负极材料研究进展

张思伟a, 张俊a, 吴思达a, 吕伟a, 康飞宇a, 杨全红a,b   

  1. a 清华大学深圳研究生院炭功能材料工程实验室 深圳 518055;
    b 天津大学化工学院 天津 300072
  • 投稿日期:2016-08-24 修回日期:2017-01-21 发布日期:2017-02-13
  • 通讯作者: 吕伟,E-mail:lv.wei@sz.tsinghua.edu.cn;杨全红,E-mail:qhyangcn@tju.edu.cn E-mail:lv.wei@sz.tsinghua.edu.cn;qhyangcn@tju.edu.cn
  • 作者简介:吕伟,清华大学深圳研究生院,副研究员.2012年在天津大学获得博士学位,之后进入清华大学深圳研究生院从事师资博士后研究工作;杨全红,天津大学教授、博士生导师,国家杰出青年基金获得者.
  • 基金资助:

    项目受国家重点基础研究发展计划(No.2014CB932400),国家杰出青年科学基金(No.51525204),国家自然科学基金(No.U1401243),深圳市基础研究计划(Nos.JCYJ20150529164918734,JCYJ20150331151358140和JCYJ20150331151358136)资助.

Research Advances of Carbon-based Anode Materials for Sodium-Ion Batteries

Zhang Siweia, Zhang Juna, Wu Sidaa, Lv Weia, Kang Feiyua, Yang Quan-Honga,b   

  1. a Engineering Laboratory for Functional Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055;
    b School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
  • Received:2016-08-24 Revised:2017-01-21 Published:2017-02-13
  • Supported by:

    Project supported by the National Basic Research Program of China (No. 2014CB932400), the National Science Fund for Distinguished Young Scholars (No. 51525204), the National Natural Science Foundation of China (No. U1401243), Shenzhen Basic Research Program (Nos. JCYJ20150529164918734, JCYJ20150331151358140 and JCYJ20150331151358136).

相较于目前主流的锂离子电池,钠离子电池成本相对较低,因而有望在未来大规模储能系统中获得重要应用,然而其实用化进程仍受制于缺少合适的正负极材料,特别是性能优异且实用化的负极材料.钠离子电池与锂离子电池具有相似的工作原理,但钠离子和锂离子在碳负极材料中的储存行为却有着很大的不同.总体而言,碳材料仍是目前最有望促进钠离子电池实用化的关键负极材料.本文系统总结并分析了目前已有碳材料中钠离子的储存机制,对负极材料的设计思路和研究进展进行了概述,着重阐述了商用化碳分子筛在钠离子电池中的实用化前景.最后,本文对钠离子电池中碳负极材料的未来发展方向进行了展望.

关键词: 碳材料, 钠离子电池, 储存机理, 碳分子筛

Compared with the widely-used lithium-ion battery (LIB), sodium-ion battery (SIB) is a promising energy storage device for large scale energy storage systems due to the low cost and environmental benignity of sodium. However, its practical use is restricted by the lack of suitable anode and cathode materials, especially the applicable anode materials with high performance. SIBs have similar working mechanism to LIBs, and thus, carbon materials are the most promising anode materials for SIBs. But the storage behaviors of Na+ and Li+ in carbon-based anodes are quite different. Graphite, which is used as the anode of commercial LIBs, hardly accommodates sodium ions. Thus, many researchers investigated sodium ion storage in disordered carbons, especially the hard carbons. Hard carbon is composed of disordered turbostratic nanodomains (TNs) and the pores formed between these domains. The edge/defect sites on the carbon surface, e.g., carbenes, vacancies, and dangling bonds on the edges of TNs, the interlayer space in TNs, and the pores can host the sodium ions. High porosity is normally needed to reach a high capacity and rate capability. But this leads to large irreversible reactions, and thus, a low initial Coulombic efficiency and poor cyclic stability. In this paper, sodium ion storage behaviors in different carbon structures are discussed and the design principles and research advances of carbon-based anode materials are reviewed. Particularly, the commercial carbon molecular sieve (CMS) is highlighted as a promising anode material for the practical use of SIBs. Finally, the future development of carbon anodes for SIB is commented and prospected.

Key words: carbon materials, sodium ion battery, storage mechanism, carbon molecular sieves