化学学报 ›› 2022, Vol. 80 ›› Issue (2): 214-228.DOI: 10.6023/A21080414 上一篇 下一篇
综述
投稿日期:
2021-08-31
发布日期:
2021-12-28
通讯作者:
尹君, 朱剑
作者简介:
王雨柔, 本科毕业于中国海洋大学材料科学与工程学院, 现为南开大学材料科学与工程学院硕士研究生. 导师朱剑教授, 主要研究方向为低维纳米材料的可控制备及其在柔性纳米电子器件中的应用. |
尹君, 南开大学材料科学与工程学院讲师. 2019年于清华大学物理系获得博士学位, 后在南开大学任教, 研究方向包括二维电子材料和二维半导体, 以及基于二维材料的光电器件或光电探测器的机理研究. |
朱剑, 南开大学材料科学与工程学院教授. 2013年于美国密歇根大学安娜堡分校的化学工程专业获得博士学位, 之后在西北大学材料科学与工程系进行博士后研究. 2017年入选国家级青年人才项目, 并受聘于南开大学材料科学与工程学院. 主要研究方向为纳米材料的合成和组装, 并探索其在高性能复合材料、信息器件及能源器件方面的应用. |
基金资助:
Yurou Wang, Guoqi Wang, Xiang Li, Jun Yin(), Jian Zhu()
Received:
2021-08-31
Published:
2021-12-28
Contact:
Jun Yin, Jian Zhu
Supported by:
文章分享
柔性压阻式传感器具有结构简单、易于制备、检测范围广等优势, 在可穿戴电子器件领域中扮演着非常重要的角色. 在制备柔性压阻式传感器的众多方法中, 溶液法由于操作简单、反应条件温和、材料的适用性广泛、易于规模化制备等优势, 成为极具发展前景的制备工艺. 在此基础上, 如何进一步提高柔性压阻式传感器的力学与电学性能也成为研究者们更加关注的话题. 另外, 制备图案化、微型化、规模化的传感器阵列为柔性压阻式传感器的应用范围拓展了新的道路. 本综述首先介绍了柔性压阻式传感器的工作原理与性能指标, 同时讨论了其性能指标对传感器在实际应用中的影响. 随后, 简单介绍了其构成材料, 并通过梳理近年来溶液法制备柔性传感器的研究成果, 选取了几种典型的溶液法制备方法进行重点介绍, 指出其具备的优势及目前存在的问题. 最后, 对溶液法制备柔性传感器的发展方向进行总结与展望.
王雨柔, 王国琪, 李想, 尹君, 朱剑. 溶液法制备柔性压阻式传感器的研究进展[J]. 化学学报, 2022, 80(2): 214-228.
Yurou Wang, Guoqi Wang, Xiang Li, Jun Yin, Jian Zhu. Research Progress of Flexible Piezoresistive Sensors Prepared by Solution-Based Processing[J]. Acta Chimica Sinica, 2022, 80(2): 214-228.
Methods | Conductive materials | Sensitivity (GF) | Range | Linearity | Response time | Cyclic stability | Ref. |
---|---|---|---|---|---|---|---|
co-blend | MWCNTs | 0.34 kPa-1 (10~100 kPa) | 0~100 kPa | R2=0.998 (10~100 kPa) | 48 ms (0~20 kPa) | 1000 cycles (0~100 kPa) | [34] |
Consecutive batch deposition (CBD) | AuNPs | 126 (0%~0.63%) | 0%~0.63% | Not known | 16.1 ms | 2000 bending cycles | [79] |
Spin coating | AgNPs | 10 (0%~24%) 71 (24%~32%), 550 (32%~36%) | 0%~36% | Three consecutive linearity region | 125 ms | Not known | [47] |
Drop casting | CNTs | 161 (ε<2%), 9.8 (2%<ε<15%), 0.58 (ε>15%) | 0%~150% | Not known | Not known | 100,000 cycles (ε=60%), 20,000 cycles (ε=100%) | [52] |
Bar coating | Graphite | 522.6 (50%) | 0%~50% | Not known | Not known | Not known | [26] |
Spray coating | MXene | 151.4 kPa-1 (0~4.7 kPa), 33.8 kPa-1 (>4.7 kPa) | 0~15 kPa | Two consecutive linearity region | <130 ms | 10,000 cycles (0~3.36 kPa) | [54] |
Screen printing | MXene- AgNWs- Nano- composite | 220.8 (0%~5%), 560.5 (5%~27%), 930.5 (27%~53%), 1933.3 (53%~62%) | 0%~62% | 0.97 (0%~5%), 0.99 (5%~62%) | 1.8 s | 1000 cycles (0%~15%) | [31] |
LbL assembly | AuNPs | 17 (0%~3%) | 0%~3% | Linearity (0%~3%) | Not known | Not known | [57] |
LbL assembly | MXene | 22.5 (40%) | 0%~20% | Not known | Not known | 2000 cycles (0%~20%) | [58] |
DIW | AgNPs | ≈10 (1%~5%) ≈53 (20%~30%) | 0%~30% | Not known | Not known | Not known | [72] |
DIW | Graphite | 536.61 (0.32%~0.62%) | –0.6%~0.6% | Three consecutive linearity region | 110 ms | 10,000 cycles (–0.32%~0%, 0%~0.32%) | [66] |
Electroless deposition | (PS@Ni@Au)MPs | 56.8 (0%~5%) 14.28 (0%~40%) | 0%~42% | Not known | Not known | 2500 cycles (0%~15%) | [80] |
Electrostatic spinning | AgNWs/ GR | 134 kPa-1 (0~1.5 kPa) | 3.7 Pa~75 kPa | Three consecutive linearity region | <20 ms | 8000 cycles (0~2 kPa) | [81] |
Solvent evaporation | Ionic liquid | 3.25 (0%~200%) | 0%~200% | Linearity | Not known | 22,503 cycles (0%~100%) | [75] |
Methods | Conductive materials | Sensitivity (GF) | Range | Linearity | Response time | Cyclic stability | Ref. |
---|---|---|---|---|---|---|---|
co-blend | MWCNTs | 0.34 kPa-1 (10~100 kPa) | 0~100 kPa | R2=0.998 (10~100 kPa) | 48 ms (0~20 kPa) | 1000 cycles (0~100 kPa) | [34] |
Consecutive batch deposition (CBD) | AuNPs | 126 (0%~0.63%) | 0%~0.63% | Not known | 16.1 ms | 2000 bending cycles | [79] |
Spin coating | AgNPs | 10 (0%~24%) 71 (24%~32%), 550 (32%~36%) | 0%~36% | Three consecutive linearity region | 125 ms | Not known | [47] |
Drop casting | CNTs | 161 (ε<2%), 9.8 (2%<ε<15%), 0.58 (ε>15%) | 0%~150% | Not known | Not known | 100,000 cycles (ε=60%), 20,000 cycles (ε=100%) | [52] |
Bar coating | Graphite | 522.6 (50%) | 0%~50% | Not known | Not known | Not known | [26] |
Spray coating | MXene | 151.4 kPa-1 (0~4.7 kPa), 33.8 kPa-1 (>4.7 kPa) | 0~15 kPa | Two consecutive linearity region | <130 ms | 10,000 cycles (0~3.36 kPa) | [54] |
Screen printing | MXene- AgNWs- Nano- composite | 220.8 (0%~5%), 560.5 (5%~27%), 930.5 (27%~53%), 1933.3 (53%~62%) | 0%~62% | 0.97 (0%~5%), 0.99 (5%~62%) | 1.8 s | 1000 cycles (0%~15%) | [31] |
LbL assembly | AuNPs | 17 (0%~3%) | 0%~3% | Linearity (0%~3%) | Not known | Not known | [57] |
LbL assembly | MXene | 22.5 (40%) | 0%~20% | Not known | Not known | 2000 cycles (0%~20%) | [58] |
DIW | AgNPs | ≈10 (1%~5%) ≈53 (20%~30%) | 0%~30% | Not known | Not known | Not known | [72] |
DIW | Graphite | 536.61 (0.32%~0.62%) | –0.6%~0.6% | Three consecutive linearity region | 110 ms | 10,000 cycles (–0.32%~0%, 0%~0.32%) | [66] |
Electroless deposition | (PS@Ni@Au)MPs | 56.8 (0%~5%) 14.28 (0%~40%) | 0%~42% | Not known | Not known | 2500 cycles (0%~15%) | [80] |
Electrostatic spinning | AgNWs/ GR | 134 kPa-1 (0~1.5 kPa) | 3.7 Pa~75 kPa | Three consecutive linearity region | <20 ms | 8000 cycles (0~2 kPa) | [81] |
Solvent evaporation | Ionic liquid | 3.25 (0%~200%) | 0%~200% | Linearity | Not known | 22,503 cycles (0%~100%) | [75] |
[1] |
Gao, Y. J.; Yu, L. T.; Yeo, J. C.; Lim, C. T. Adv. Mater. 2020, 32, 1902133.
doi: 10.1002/adma.v32.15 |
[2] |
Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Adv. Mater. 2020, 32, 1901924.
doi: 10.1002/adma.v32.15 |
[3] |
Wang, P. P.; Hu, M. M.; Wang, H.; Chen, Z.; Feng, Y. P.; Wang, J. Q.; Ling, W.; Huang, Y. Adv. Sci. 2020, 7, 2001116.
doi: 10.1002/advs.v7.20 |
[4] |
Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E. O.; Marvi, H. Adv. Mater. 2021, 33, 2003139.
doi: 10.1002/adma.v33.19 |
[5] |
Mishra, S.; Kim, Y. S.; Intarasirisawat, J.; Kwon, Y. T.; Lee, Y.; Mahmood, M.; Lim, H. R.; Herbert, R.; Yu, K. J.; Ang, C. S.; Yeo, W. H. Sci. Adv. 2020, 6, 1729.
|
[6] |
Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V.; Shen, G. Z.; Han, W. Adv. Funct. Mater. 2021, 31, 2010533.
doi: 10.1002/adfm.v31.17 |
[7] |
Bian, Y. S.; Liu, K.; Guo, Y. L.; Liu, Y. Q. Acta Chim. Sinica 2020, 78, 848. (in Chinese)
doi: 10.6023/A20050197 |
( 边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.)
|
|
[8] |
Qian, X.; Su, M.; Li, F. Y.; Song, Y. L. Acta Chim. Sinica 2016, 74, 565. (in Chinese)
doi: 10.6023/A16030156 |
( 钱鑫, 苏萌, 李风煜, 宋延林, 化学学报, 2016, 74, 565.)
|
|
[9] |
Xiang, L.; Zeng, X. W.; Xia, F.; Jin, W. L.; Liu, Y. D.; Hu, Y. F. ACS Nano 2020, 14, 6449.
doi: 10.1021/acsnano.0c01164 |
[10] |
Tu, J. B.; Torrente-Rodriguez, R. M.; Wang, M. Q.; Gao, W. Adv. Funct. Mater. 2020, 30, 1906713.
doi: 10.1002/adfm.v30.29 |
[11] |
Xu, K. C.; Lu, Y. Y.; Takei, K. Adv. Funct. Mater. 2021, 31, 2007436.
doi: 10.1002/adfm.v31.39 |
[12] |
Chen, P.; Sun, X. M.; Peng, H. S. Adv. Funct. Mater. 2020, 30, 2001287.
|
[13] |
Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kang, K.; Hwang, C. S.; Lu, N. S.; Hyeon, T.; Kim, D. H. Nat. Nanotechnol. 2014, 9, 397.
doi: 10.1038/nnano.2014.38 |
[14] |
Yang, T. T.; Xie, D.; Li, Z. H.; Zhu, H. W. Mater. Sci. Eng., R 2017, 115, 1.
doi: 10.1016/j.mser.2017.02.001 |
[15] |
Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Adv. Funct. Mater. 2020, 30, 2001553.
doi: 10.1002/adfm.v30.25 |
[16] |
Su, Q.; Huang, X.; Zhang, Y. B.; Zou, Q. Microelectron. Eng. 2020, 231, 111370.
doi: 10.1016/j.mee.2020.111370 |
[17] |
Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Nature 2014, 516, 222.
doi: 10.1038/nature14002 |
[18] |
Yin, R. Y.; Wang, D. P.; Zhao, S. F.; Lou, Z.; Shen, G. Z. Adv. Funct. Mater. 2021, 31, 2008936.
doi: 10.1002/adfm.v31.11 |
[19] |
Hou, C.; Xu, Z. J.; Qiu, W.; Wu, R. H.; Wang, Y. N.; Xu, Q. C.; Liu, X. Y.; Guo, W. X. Small 2019, 15, 1805084.
doi: 10.1002/smll.v15.11 |
[20] |
Xu, Z. J.; Li, W. F.; Huang, J. N.; Liu, Q.; Guo, X.; Guo, W. X.; Liu, X. Y. J. Mater. Chem. A 2018, 6, 19584.
doi: 10.1039/C8TA07154C |
[21] |
Qiu, A. D.; Li, P. L.; Yang, Z. K.; Yao, Y.; Lee, I.; Ma, J. Adv. Funct. Mater. 2019, 29, 1806306.
doi: 10.1002/adfm.v29.17 |
[22] |
Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366.
doi: 10.1021/nn402728g |
[23] |
Gao, X. X.; Bian, G.; Zhu, J. J. Mater. Chem. C 2019, 7, 12835.
doi: 10.1039/C9TC03935J |
[24] |
Wu, H. G.; Liu, Q.; Du, W. C.; Li, C.; Shi, G. Q. ACS Appl. Mater. Interfaces 2018, 10, 3895.
doi: 10.1021/acsami.7b19014 |
[25] |
Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. Adv. Mater. 2017, 29, 1603328.
|
[26] |
Amjadi, M.; Turan, M.; Clementson, C. P.; Sitti, M. ACS Appl. Mater. Interfaces 2016, 8, 5618.
doi: 10.1021/acsami.5b12588 |
[27] |
Zhang, H. J.; Han, W. Q.; Xu, K.; Zhang, Y.; Lu, Y. F.; Nie, Z. T.; Du, Y. H.; Zhu, J. X.; Huang, W. Nano Lett. 2020, 20, 3449.
doi: 10.1021/acs.nanolett.0c00372 |
[28] |
Ruth, S. R. A.; Feig, V. R.; Tran, H.; Bao, Z. N. Adv. Funct. Mater. 2020, 30, 2003491.
doi: 10.1002/adfm.v30.39 |
[29] |
Markvicka, E. J.; Bartlett, M. D.; Huang, X. N.; Majidi, C. Nat. Mater. 2018, 17, 618.
doi: 10.1038/s41563-018-0084-7 |
[30] |
Xue, Z. G.; Song, H. L.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G. Adv. Mater. 2020, 32, 1902254.
doi: 10.1002/adma.v32.15 |
[31] |
Li, F. C.; Liu, Y.; Shi, X. L.; Li, H. P.; Wang, C. H.; Zhang, Q.; Ma, R. J.; Liang, J. J. Nano Lett. 2020, 20, 6176.
doi: 10.1021/acs.nanolett.0c02519 |
[32] |
Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. ACS Nano 2014, 8, 5154.
doi: 10.1021/nn501204t |
[33] |
Zhou, Y. J.; Zhan, P. F.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. ACS Appl. Mater. Interfaces 2019, 11, 7405.
doi: 10.1021/acsami.8b20768 |
[34] |
Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. ACS Nano 2020, 14, 12866.
doi: 10.1021/acsnano.0c03659 |
[35] |
Lee, Y.; Ahn, J. H. ACS Nano 2020, 14, 1220.
doi: 10.1021/acsnano.0c00363 |
[36] |
Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. ACS Nano 2018, 12, 7546.
doi: 10.1021/acsnano.8b03488 |
[37] |
Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G. Z.; Han, W. Adv. Mater. 2021, 2007890.
|
[38] |
Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D.; Mun, J.; Wang, N. G. J.; Yin, Y. K.; Cai, W.; Yun, Y. J.; Tok, J. B. H.; Bao, Z. N. Sci. Adv. 2019, 5, eaav3097.
doi: 10.1126/sciadv.aav3097 |
[39] |
Xu, K. C.; Fujita, Y.; Lu, Y. Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. Adv. Mater. 2021, 33, 2008701.
doi: 10.1002/adma.v33.18 |
[40] |
Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Adv. Mater. 2020, 32, 1902743.
doi: 10.1002/adma.v32.15 |
[41] |
Wang, B. H.; Facchetti, A. Adv. Mater. 2019, 31, 1901408.
doi: 10.1002/adma.v31.28 |
[42] |
Ye, Y. H.; Zhang, Y. F.; Chen, Y.; Han, X. S.; Jiang, F. Adv. Funct. Mater. 2020, 30, 2003430.
doi: 10.1002/adfm.v30.35 |
[43] |
Wu, Z. X.; Yang, X.; Wu, J. ACS Appl. Mater. Interfaces 2021, 13, 2128.
doi: 10.1021/acsami.0c21841 |
[44] |
Feng, P. D.; Ji, H. J.; Zhang, L.; Luo, X.; Leng, X. S.; He, P.; Feng, H. H.; Zhang, J. H.; Ma, X.; Zhao, W. W. Nanotechnology 2019, 30, 185501.
doi: 10.1088/1361-6528/ab013b |
[45] |
Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Adv. Funct. Mater. 2021, 31, 2008006.
doi: 10.1002/adfm.v31.13 |
[46] |
Zhou, X. Z.; Zhang, X.; Zhao, H. X.; Krishnan, B. P.; Cui, J. X. Adv. Funct. Mater. 2020, 30, 2003533.
doi: 10.1002/adfm.v30.38 |
[47] |
Li, H.; Zhang, J. J.; Chen, J.; Luo, Z. B.; Zhang, J. Y.; Alhandarish, Y.; Liu, Q. H.; Tang, W.; Wang, L. Sci. Rep. 2020, 10, 4639.
doi: 10.1038/s41598-020-61658-z |
[48] |
Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. Nano Lett. 2012, 12, 5714.
doi: 10.1021/nl302959a |
[49] |
Nie, B. B.; Li, X. M.; Shao, J. Y.; Li, X.; Tian, H. M.; Wang, D. R.; Zhang, Q.; Lu, B. H. ACS Appl. Mater. Interfaces 2017, 9, 40681.
doi: 10.1021/acsami.7b12987 |
[50] |
Wang, S.; Fang, Y. L.; He, H.; Zhang, L.; Li, C. A.; Ouyang, J. Y. Adv. Funct. Mater. 2021, 31, 2007495.
doi: 10.1002/adfm.v31.5 |
[51] |
Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. Nanoscale 2014, 6, 11932.
doi: 10.1039/C4NR03295K |
[52] |
Liu, Z. Y.; Qi, D. P.; Guo, P. Z.; Liu, Y.; Zhu, B. W.; Yang, H.; Liu, Y. Q.; Li, B.; Zhang, C. G.; Yu, J. C.; Liedberg, B.; Chen, X. D. Adv. Mater. 2015, 27, 6230.
doi: 10.1002/adma.201503288 |
[53] |
Lee, S.; Pharr, M. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9251.
|
[54] |
Cheng, Y. F.; Ma, Y. A.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y.; Wang, J. B.; Gao, Y. H. ACS Nano 2020, 14, 2145.
doi: 10.1021/acsnano.9b08952 |
[55] |
Wang, Z.; Kang, Y.; Zhao, S. C.; Zhu, J. Adv. Mater. 2020, 32, 1806480.
doi: 10.1002/adma.v32.3 |
[56] |
Richardson, J. J.; Bjornmalm, M.; Caruso, F. Science 2015, 348, aaa2491.
doi: 10.1126/science.aaa2491 |
[57] |
Vossmeyer, T.; Stolte, C.; Ijeh, M.; Kornowski, A.; Weller, H. Adv. Funct. Mater. 2008, 18, 1611.
doi: 10.1002/adfm.v18:11 |
[58] |
An, H. S.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Sci. Adv. 2018, 4, aaq0118.
|
[59] |
Mo, L. X.; Guo, Z. X.; Yang, L.; Zhang, Q. Q.; Fang, Y.; Xin, Z. Q.; Chen, Z.; Hu, K.; Han, L.; Li, L. H. Int. J. Mol. Sci. 2019, 20, 2124.
doi: 10.3390/ijms20092124 |
[60] |
Song, Y.; Kim, D.; Kang, S.; Ko, Y.; Ko, J.; Huh, J.; Ko, Y.; Lee, S. W.; Cho, J. Adv. Funct. Mater. 2019, 29, 1806584.
doi: 10.1002/adfm.v29.30 |
[61] |
Lee, S.; Song, Y.; Ko, Y.; Ko, Y.; Ko, J.; Kwon, C. H.; Huh, J.; Kim, S. W.; Yeom, B.; Cho, J. Adv. Mater. 2020, 32, 1906460.
doi: 10.1002/adma.v32.7 |
[62] |
Zhou, N. J.; Liu, C. Y.; Lewis, J. A.; Ham, D. Adv. Mater. 2017, 29, 1605198.
doi: 10.1002/adma.v29.15 |
[63] |
Li, J. M.; Xu, H.; Zhang, Z. A.; Hao, Y. F.; Wang, H. J.; Huang, X. Adv. Funct. Mater. 2020, 30, 1905024.
doi: 10.1002/adfm.v30.29 |
[64] |
Sun, H. Y.; Han, Z. Y.; Willenbacher, N. ACS Appl. Mater. Interfaces 2019, 11, 38092.
doi: 10.1021/acsami.9b11071 |
[65] |
Liu, H. D.; Zhang, H. J.; Han, W. Q.; Lin, H. J.; Li, R. Z.; Zhu, J. X.; Huang, W. Adv. Mater. 2021, 33, 2004782.
doi: 10.1002/adma.v33.8 |
[66] |
Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Adv. Funct. Mater. 2015, 25, 2395.
doi: 10.1002/adfm.201500094 |
[67] |
Kang, Y.; Wang, G. Q.; Zhao, S. C.; Li, J. Y.; Di, L.; Feng, Y.; Yin, J.; Zhu, J. Small 2020, 16, 2004782.
doi: 10.1002/smll.v16.47 |
[68] |
Agarwala, S.; Goh, G. L.; Le, T. S. D.; An, J. N.; Peh, Z. K.; Yeong, W. Y.; Kim, Y. J. ACS Sens. 2019, 4, 218.
doi: 10.1021/acssensors.8b01293 |
[69] |
Jambhulkar, S.; Xu, W. H.; Ravichandran, D.; Prakash, J.; Kannan, A. N. M.; Song, K. Nano Lett. 2020, 20, 3199.
doi: 10.1021/acs.nanolett.9b05245 |
[70] |
Zhou, N. J.; Bekenstein, Y.; Eisler, C. N.; Zhang, D. D.; Schwartzberg, A. M.; Yang, P. D.; Alivisatos, A. P.; Lewis, J. A. Sci. Adv. 2019, 5, aav8141.
|
[71] |
Barmpakos, D.; Tsamis, C.; Kaltsas, G. Microelectron. Eng. 2020, 225, 111266.
doi: 10.1016/j.mee.2020.111266 |
[72] |
Lee, H.; Lee, J.; Seong, B.; Jang, H. S.; Byun, D. Adv. Mater. Technol. 2018, 3, 1700228.
doi: 10.1002/admt.201700228 |
[73] |
Kim, J. Y.; Ji, S.; Jung, S.; Ryu, B. H.; Kim, H. S.; Lee, S. S.; Choi, Y.; Jeong, S. Nanoscale 2017, 9, 11035.
doi: 10.1039/C7NR01865G |
[74] |
Lee, J.; Pyo, S.; Kwon, D. S.; Jo, E.; Kim, W.; Kim, J. Small 2019, 15, e1805120.
|
[75] |
Miao, W. N.; Wang, D. Y.; Liu, Z. M.; Tang, J. Y.; Zhu, Z. P.; Wang, C.; Liu, H.; Wen, L.; Zheng, S.; Tian, Y.; Jiang, L. ACS Nano 2019, 13, 3225.
doi: 10.1021/acsnano.8b08911 |
[76] |
Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Adv. Mater. 2014, 26, 2022.
doi: 10.1002/adma.201304742 |
[77] |
Yu, L.; Parker, S.; Xuan, H. F.; Zhang, Y. J.; Jiang, S.; Tousi, M.; Manteghi, M.; Wang, A. B.; Jia, X. T. Adv. Funct. Mater. 2020, 30, 1908915.
doi: 10.1002/adfm.v30.9 |
[78] |
Huang, S. Y.; Zhang, B. C.; Shao, Z. B.; He, L.; Zhang, Q.; Jie, J. S.; Zhang, X. H. Nano Lett. 2020, 20, 2478.
doi: 10.1021/acs.nanolett.9b05217 |
[79] |
Huang, C. B.; Yao, Y. F.; Montes-Garcia, V.; Stoeckel, M. A.; Von Holst, M.; Ciesielski, A.; Samori, P. Small 2021, 17, e2007593.
|
[80] |
Hwang, H.; Kim, Y.; Park, J. H.; Jeong, U. Adv. Funct. Mater. 2020, 30, 1908514.
doi: 10.1002/adfm.v30.13 |
[81] |
Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L.; Zhu, G. ACS Nano 2020, 14, 9605.
doi: 10.1021/acsnano.9b10230 |
[82] |
Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. Adv. Mater. 2017, 29, 1700375.
doi: 10.1002/adma.v29.33 |
[83] |
Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Adv. Mater. 2019, 31, 1801072.
doi: 10.1002/adma.v31.9 |
[84] |
Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J.; Wang, H. M.; Shen, X. Y.; Zhang, Y. Y. InfoMat 2020, 2, 184.
doi: 10.1002/inf2.v2.1 |
[85] |
Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nature Mater. 2010, 9, 859.
doi: 10.1038/nmat2834 |
[86] |
Pang, C.; Lee, G. Y.; Kim, T.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. Nature Mater. 2012, 11, 795.
doi: 10.1038/nmat3380 |
[1] | 钱鑫, 苏萌, 李风煜, 宋延林. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(7): 565-575. |
[2] | 周园, 张昕岳, 年洪恩, 庞玉娜, 王宏斌. 梯度式升温脱水制备LiBF4及其表征[J]. 化学学报, 2010, 68(14): 1399-1403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||