化学学报 ›› 2023, Vol. 81 ›› Issue (4): 328-337.DOI: 10.6023/A23020056 上一篇 下一篇
研究论文
投稿日期:
2023-02-28
发布日期:
2023-03-23
基金资助:
Jie Yanga,b, Lin Lingb, Yuxue Lib,*(), Long Lub,*()
Received:
2023-02-28
Published:
2023-03-23
Contact:
* E-mail: Supported by:
文章分享
深入理解高氯酸铵的热分解机理, 对于优化固体推进剂配方设计十分重要. 我们采用对称破缺密度泛函方法 (BS-UB3LYP/6-311+G(d,p)), 对高氯酸铵的热分解机理进行了系统的梳理和深入研究. 首先, 高氯酸铵通过质子转移, 生成HClO4和NH3, 从吸附态进入气相. 进而高氯酸的Cl—OH键均裂, 生成羟基自由基•OH和三氧化氯自由基•ClO3, 它们优先和NH3反应, 生成•NH2. •NH2和HClO4反应生成•ClO4自由基, 进而和NH3反应生成H2NO, 再被自由基物种拔H生成NO. NO和•OH反应生成NO2, 和•NH2及•OH反应生成N2O. 这些产物与诸多实验观测结果一致.
杨洁, 凌琳, 李玉学, 吕龙. 高氯酸铵热分解机理的密度泛函理论研究[J]. 化学学报, 2023, 81(4): 328-337.
Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate[J]. Acta Chimica Sinica, 2023, 81(4): 328-337.
[1] |
Thakre, P.; Yang, V. Solid Propellants, Encyclopedia of Aerospace Engineering, Eds.: Blockley, R.; Shyy, W., John Wiley & Sons, Ltd, London, 2010, pp. 1-10.
|
[2] |
Mason, B. P.; Roland, C. M. Rubber Chem. Technol. 2019, 92, 1.
doi: 10.5254/rct.19.80456 |
[3] |
Chaturvedi, S.; Dave, P. N. Arabian. J. Chem. 2019, 12, 2061.
doi: 10.1016/j.arabjc.2014.12.033 |
[4] |
Usman, M.; Wang, L.; Yu, H.; Haq, F.; Haroon, M.; R. Summe, Ullah; Khan, A.; Fahad, S.; Nazir, A.; Elshaarani, T. J. Organomet. Chem. 2018, 872, 40.
doi: 10.1016/j.jorganchem.2018.07.015 |
[5] |
Chen, T.; Hu, Y.; Zhang, C.; Gao, Z. Def. Technol. 2021, 17, 1471.
|
[6] |
Miyata, K; Kubota, N. Propellants Explos. Pyrotech. 1990, 15, 127.
doi: 10.1002/(ISSN)1521-4087 |
[7] |
Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L. T.; Khimeche, K.; Fassina, M.; Dossi, S.; Colombo, G. Arabian. J. Chem. 2019, 12, 3639.
doi: 10.1016/j.arabjc.2015.11.016 |
[8] |
Boldyrev, V. V. Thermochim. Acta 2006, 443, 1.
doi: 10.1016/j.tca.2005.11.038 |
[9] |
Jacobs, P. W. M.; Whitehead, H. M. Chem. Rev. 1969, 69, 551.
doi: 10.1021/cr60260a005 |
[10] |
Zhang, H.; Nie, J.; Jiao, G.; Xu, X.; Yan, S.; Guo, X.; Zhang, T. Appl. Sci. 2021, 11, 9392.
doi: 10.3390/app11209392 |
[11] |
Heath, G. A.; Majer, J. R. Trans. Faraday Soc. 1964, 60, 1783.
doi: 10.1039/tf9646001783 |
[12] |
Góbi, S.; Bergantini, A.; Turner, A. M.; Kaiser, R. I. J. Phys. Chem. A 2017, 121, 3879.
doi: 10.1021/acs.jpca.7b01862 |
[13] |
Mallick, L.; Kumar, S.; Chowdhury, A. Thermochim. Acta 2015, 610, 57.
doi: 10.1016/j.tca.2015.04.025 |
[14] |
Mallick, L.; Kumar, S.; Chowdhury, A. Thermochim. Acta 2017, 653, 83.
doi: 10.1016/j.tca.2017.04.004 |
[15] |
Zhu, Y.-L.; Huang, H.; Ren, H.; Jiao, Q.-J. J. Energ. Mater. 2014, 32, 16.
doi: 10.1080/07370652.2012.725453 |
[16] |
Khairetdinov, E. F.; Boldyrev, V. V. Thermochim. Acta 1980, 41, 63.
doi: 10.1016/0040-6031(80)80096-7 |
[17] |
Bircumshaw, L. L.; Newman, B. H. Proc. R. Soc. London, Ser. A 1955, 254, 228.
|
[18] |
Galwey, A. K.; Jacobs, P. W. M. Proc. R. Soc. London, Ser. A 1960, 254, 455.
|
[19] |
Jacobs, P. W. M.; Russell-Jones, A. J. Phys. Chem. 1968, 72, 202.
doi: 10.1021/j100847a038 |
[20] |
Jacobs, P. W. M.; Pearson, G. S. Combust. Flame. 1969, 13, 419.
doi: 10.1016/0010-2180(69)90112-6 |
[21] |
Liu, Z.; Yin, C.; Kong, Y.; Zhao, F.; Luo, Y.; Xiang, H. Energetic Materlals 2000, 2, 75. (in Chinese)
|
(刘子如, 阴翠梅, 孔扬辉, 赵凤起, 罗阳, 向海, 含能材料, 2000, 2, 75.)
|
|
[22] |
Politzer, P.; Lane, P. J. Mol. Struct. THEOCHEM 1998, 454, 229.
doi: 10.1016/S0166-1280(98)00293-0 |
[23] |
Zhu, R. S.; Lin, M. C. Chem. Phys. Lett. 2006, 431, 272.
doi: 10.1016/j.cplett.2006.10.007 |
[24] |
Zhu, R. S.; Lin, M. C. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 10, 77.
|
[25] |
Chatterjee, T.; Thynell, S. T. J. Phys. Chem. A 2021, 125, 7520.
doi: 10.1021/acs.jpca.1c04433 |
[26] |
Liu, M.; Liu, C.; Tsai, H. J. Chin. Chem. Soc. 2018, 65, 1437.
doi: 10.1002/jccs.2018.65.issue-12 |
[27] |
Jacobs, P. W. M.; Russell-Jones, A. AIAA J. 1967, 5, 829.
doi: 10.2514/3.4085 |
[28] |
Levy, J. B. J. Phys. Chem. 1962, 66, 1092.
doi: 10.1021/j100812a030 |
[29] |
Fisher, I. P. Trans. Faraday Soc. 1967, 63, 684.
doi: 10.1039/tf9676300684 |
[30] |
Zhou, L.; Cao, S.; Zhang, L.; Xiang, G.; Wang, J.; Zeng, X.; Chen, J. J. Hazard. Mater. 2020, 392, 122358.
doi: 10.1016/j.jhazmat.2020.122358 |
[31] |
Pearson, G. S.; Sutton, D. AIAA J. 1967, 5, 2101.
doi: 10.2514/3.4391 |
[32] |
Zhu, R. S.; Lin, M. C. PhysChemComm 2001, 4, 127.
doi: 10.1039/B109523B |
[33] |
Xu, S.; Lin, M. C. Int. J. Chem. Kinet. 2009, 41, 678.
doi: 10.1002/kin.v41:11 |
[34] |
Lüttke, W.; Skancke, P. N.; Traetteberg, M. Theor. Chim. Acta 1994, 87, 321.
doi: 10.1007/BF01113388 |
[35] |
Ruud, K.; Helgaker, T.; Uggerud, E. J. Mol. Struct. THEOCHEM 1997, 393, 59.
doi: 10.1016/S0166-1280(96)04852-X |
[36] |
Zhu, W.; Wei, T.; Zhu, W.; Xiao, H. J. Phys. Chem. A 2008, 112, 4688.
doi: 10.1021/jp800693e |
[37] |
Zhu, R. S.; Lin, M. C. J. Phys. Chem. C 2008, 112, 14481.
doi: 10.1021/jp803224x |
[38] |
For details, see supporting information SI.
|
[39] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J., A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
|
[40] |
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
doi: 10.1063/1.464913 |
[41] |
Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover, New York, 1996, pp. 221-229.
|
[42] |
Grafenstein, J.; Hjerpe, A. M.; Kraka, E. J. Phys. Chem. A 2000, 104, 1748.
doi: 10.1021/jp993122q |
[43] |
Yao, Z.; Yu, Z. J. Am. Chem. Soc. 2011, 133, 10864.
doi: 10.1021/ja2021476 |
[44] |
Ling, L.; Liu, K.; Li, X.; Li, Y. ACS Catal. 2015, 5, 2458.
doi: 10.1021/cs501892s |
[45] |
Ling, L.; Wang, J.; Li, J.; Li, Y.; Lu, L. Chin. J. Org. Chem. 2023, 43, 285. (in Chinese)
doi: 10.6023/cjoc202206027 |
(凌琳, 王健, 李婧, 李玉学, 吕龙, 有机化学, 2023, 43, 285.)
doi: 10.6023/cjoc202206027 |
[1] | 胡磊, 马振叶, 纪明卫, 张利雄. 纳米Fe2O3/端羟基聚丁二烯(HTPB)复合粒子的制备与表征[J]. 化学学报, 2011, 69(24): 3028-3032. |
[2] | 杜洪臣, 许晓娟, 刘彦, 刘卉, 王芳, 张建英, 贡雪东. 苯的硝基和叠氮基衍生物的理论研究[J]. 化学学报, 2011, 69(03): 269-276. |
[3] | 付一政, 胡双启, 兰艳花, 刘亚青. HTPB/增塑剂玻璃化转变温度及力学性能的分子动力学模拟[J]. 化学学报, 2010, 68(08): 809-813. |
[4] | 尚静, 张建国, 崔燕, 张同来, 舒远杰, 杨利. 含能配合物[Zn(DAT)6](ClO4)2(DAT=1,5-二氨基四唑)的合成、晶体结构及性质[J]. 化学学报, 2010, 68(03): 233-238. |
[5] | 刘磊力,a 李凤生b 支春雷b 宋洪昌b 杨 毅b. 镁铜合金储氢材料的制备及对高氯酸铵热分解过程的影响[J]. 化学学报, 2008, 66(12): 1424-1428. |
[6] | 刘建勋, 姜炜, 王作山, 李凤生. 直形碳纳米管、分叉碳纳米管负载纳米NiO及其对高氯酸铵热分解的影响[J]. 化学学报, 2007, 65(23): 2725-2730. |
[7] | 郭金玉, 张建国, 张同来. 二维Co(nip)2(py)2(H2O)2配合物的水热合成, 晶体结构和热分解机理研究(nip=5-硝基间苯二甲酸根, py=吡啶)[J]. 化学学报, 2006, 64(16): 1693-1699. |
[8] | 周龙梅, 侯立权, 刘宏英, 李凤生. Y2O3/纳米碳管复合粒子的结构及其对高氯酸铵热分解性能的研究[J]. 化学学报, 2006, 64(15): 1548-1552. |
[9] | 马振叶, 李凤生, 陈爱四, 白华萍. 纳米Fe2O3/高氯酸铵复合粒子的制备及其热分解性能研究[J]. 化学学报, 2004, 62(13): 1252-1255. |
[10] | 冯长根,刘赵淼,曾庆轩,徐世英. 反应NH~4ClO~4+Mg+K~2Cr~2O~7的非线性化学动力学2: 固相 振荡燃烧的化学模 型[J]. 化学学报, 1999, 57(4): 339-344. |
[11] | 冯长根,刘赵淼,曾庆轩,许又文,徐世英. 反应NH~4ClO~4+Mg+K~2Cr~2O~7的非线性化学动力学1: 固相振 荡燃烧的实验现 象[J]. 化学学报, 1999, 57(3): 229-235. |
[12] | 刁国旺,李亮,张祖训. 超微半扁球电极上循环扫描可逆波理论及其验证[J]. 化学学报, 1997, 55(6): 570-577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||