化学学报 ›› 2025, Vol. 83 ›› Issue (1): 72-86.DOI: 10.6023/A24100322 上一篇    

研究论文

三维光子晶体的动态色彩响应机制及应用进展

田丰a, 李华腾b,*(), 赵国伟a,b, 汪长春b,*()   

  1. a 珠海光驭科技有限公司 珠海 519099
    b 聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433
  • 投稿日期:2024-10-27 发布日期:2024-11-21
  • 作者简介:

    田丰, 男, 2004年获华东理工大学高分子材料与工程学士学位, 2008年获复旦大学高分子化学与物理硕士学位, 2012年获英国剑桥大学化学博士学位, 2015年在美国哈佛大学工程与应用科学学院完成博士后研究后回国创立珠海光驭科技有限公司并担任董事长兼CEO. 曾获爱丁堡公爵奖、剑桥大学校长奖, 中国工程院中国工程前沿杰出青年学者, 科技部创新人才推进计划等奖项. 主要研究方向为超分子自组装和微球基光子晶体材料. 在Nat. Commun.等期刊上发表论文13篇.

    李华腾, 男, 2024.06于复旦大学先进材料实验室获得理学博士学位, 2024.07入站复旦大学高分子科学系开展博士后研究, 目前主要研究方向为高性能3D光子晶体结构色材料.

    汪长春, 男, 复旦大学特聘教授. 1987年复旦大学化学系本科毕业, 1990年复旦大学化学系硕士毕业后留在复旦大学工作, 1995年获复旦大学高分子化学和物理专业理学博士学位. 2005年获国家杰出青年科学基金资助. 目前主要研究方向为特殊结构和功能复合微球的基础和应用研究, 具有“热缩冷胀”性能的聚合物研究, 相关研究应用于光子晶体材料的制备、靶向纳米药物载体及生物分子快速分离检测、高性能涂层及功能复合材料等. 在Nat. Chem., Nat. Commun., Angew. Chem. Int. Ed., JACS, Adv. Mater., ACS Nano等期刊上发表论文300余篇.

  • 基金资助:
    广东省重点领域研发计划项目(2020B010190003)

Research Progress on the Dynamic Color Response Mechanism and Applications of Three-Dimensional Photonic Crystals

Feng Tiana, Huateng Lib(), Guowei Zhaoa,b, Changchun Wangb()   

  1. a Phomera Metamaterials Inc., Zhuhai 519099, China
    b State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
  • Received:2024-10-27 Published:2024-11-21
  • Contact: *E-mail: huatengli@fudan.edu.cn; ccwang@fudan.edu.cn
  • Supported by:
    Key research and development project of Guangdong Province(2020B010190003)

三维(3D)光子晶体(Photonic Crystals, PCs)因其独特的结构和动态色彩, 在智能显示、传感、防伪、信息加密、软体机器人和柔性电子等领域展现出广阔的应用前景. 这类材料能够在外界刺激(如温度、pH、湿度、机械力等)下改变自身材料的有序度、有效折光指数(neff)和晶面间距(d), 从而产生可逆的动态响应, 改变自身的色彩. 这种颜色变化非常稳定且不会被光漂白, 展现出传统染料和颜料无法比拟的优势. 近年来, 随着胶体粒子“自下而上”组装方法的迅速发展, 极大推动了动态响应型三维光子晶体的研究和应用. 本文综述了三维光子晶体在动态变色领域的基础和相关应用的最新进展, 系统总结了三维光子晶体结构色材料的颜色动态调控机制, 并展示了这类材料在特定领域中的典型应用. 最后, 本综述对动态三维光子晶体的发展前景进行了展望, 旨在促进此类材料的进一步研究与应用.

关键词: 三维光子晶体, 胶体粒子, 结构色, 动态响应, 可视化

Photonic crystals (PCs) exhibit unique dynamic color-changing properties, making them highly promising for applications in smart displays, sensing, anti-counterfeiting, information encryption, soft robotics and flexible electronics. This kind of materials, made up of periodic structured materials with varying refractive indices or dielectric constants, exhibit unique optical properties, including photonic band gap (PBG), photon localization, slow photon effect and fluorescence enhancement. Especially, by forming PBG, photonic crystal can reflect specific visible wavelength to create vivid structural color. Based on the construction direction of the periodic structured materials, photonic crystals can be categorized into one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures, each exhibiting unique optical properties. Among them, 3D photonic crystals have gained considerable attention due to the bottom-up straightforward and efficient fabrication methods by using colloidal particles. Over the past three decades, significant advancements have been made in 3D photonic crystal, driven by the development of various colloidal assembly techniques. These methods typically employ organic or inorganic microspheres embedded within functional polymer matrix, yielding 3D photonic structures such as opal, inverse opal, double-inverse opal, etc. Notably, 3D photonic crystals exhibit dynamic color responses to external stimuli, including temperature, pH, light, humidity, mechanical force, etc. The dynamic color changes arise from the adjustment of the 3D internal structure such as degree of ordering, effective refractive index (neff) and lattice spacing (d). Such color changes are highly stable and resistant to photobleaching, presenting significant advantages over traditional dyes and pigments. While numerous reviews discuss and analyze the synthesis and preparation of 3D photonic crystals, this review focuses on their critical role in dynamic responsive color changing systems, systematically detailing the mechanisms underlying structural color variation and illustrating their representative visual applications. Finally, this review outlines future development trends in dynamic 3D photonic crystal materials, with the aim of encouraging further exploration and expansion of their technological potential.

Key words: 3D photonic crystal, colloidal particle, structural color, dynamic response, visualization