化学学报 ›› 2025, Vol. 83 ›› Issue (4): 428-438.DOI: 10.6023/A24120375 上一篇    

综述

外泌体分离技术研究进展

李帅a,b, 刘亚婷c, 仰大勇a,*()   

  1. a 天津大学 化工学院 合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300350
    b 天津大学浙江研究院 宁波 315200
    c 苏州亿弗生物科技有限公司 苏州 215000
  • 投稿日期:2024-12-20 发布日期:2025-02-14
  • 作者简介:

    李帅, 博士, 分别于2018年和2023年获得天津大学化工学院学士和博士学位, 目前在天津大学浙江研究院进行博士后研究, 主要从事外泌体分离方法和癌症早期诊断研究.

    刘亚婷, 于2021年取得安徽工程大学学士学位, 2024年取得沈阳医科大学硕士学位, 现为苏州亿弗生物科技有限公司研发工程师, 研究方向为外泌体分离技术和产品的研发.

    仰大勇, 博士, 复旦大学“瑞清”特聘讲席教授, 天津大学兼职教授. 国家杰出青年科学基金、国家优秀青年科学基金获得者, 入选海外高层次人才计划. 研究方向为核酸化学与功能材料, 在Chem. Rev.、Acc. Chem. Res.、PNAS、J. Am. Chem. Soc.、Angew. Chem.、Nat. Commun.、Sci. Adv.、Nat. Protoc.和Adv. Mater.等杂志发表学术论文150余篇.

  • 基金资助:
    中国博士后科学基金(2023M742595)

Recent Progress on Exosome Separation

Shuai Lia,b, Yating Liuc, Dayong Yanga()   

  1. a Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    b Zhejiang Institute of Tianjin University, Ningbo 315200, China
    c Suzhou EVs Biotechnology Co., Ltd, Suzhou 215000, China
  • Received:2024-12-20 Published:2025-02-14
  • Contact: E-mail: dayongyang@fudan.edu.cn
  • Supported by:
    China Postdoctoral Science Foundation(2023M742595)

外泌体是来源于母细胞的小细胞外囊泡, 包裹有核酸、蛋白等内容物, 能够动态实时地反映母细胞的生理病理状态, 因此在药物递送、疾病诊断和治疗等生物医学领域有广泛的应用. 外泌体应用的第一步是分离和纯化, 不管是从血液、唾液等体液还是细胞培养上清中获取外泌体, 都需要对其进行分离纯化, 以去除不需要的杂质. 基于外泌体的尺寸、密度、电荷、组成, 已经开发出了诸多分离方法, 比如超速离心、超滤、尺寸排阻色谱、聚合物沉淀、免疫亲和等, 这些传统的分离方法已经非常成熟, 尤其是超速离心, 被誉为是外泌体分离的金标准, 为广大研究者所接受. 然而这些方法在分离纯度、效率、处理量、操作便捷性等方面各有优缺点, 因此将多种分离方法联用是一种新思路. 此外, 随着化学、材料学、生物学、医学、工程学、机械学等学科的发展和交叉, 越来越多新兴的技术被开发出来, 比如微流控法、基于流体流动原理分离、热泳法、脂质识别分离、DNA适配体亲合法等, 在一定程度上提高了外泌体的分离效率和纯度. 在本综述中, 详细总结了传统分离方法和新兴分离方法的最新进展, 并对未来发展进行了展望, 以期促进该领域的发展, 推动外泌体技术的产业化.

关键词: 外泌体, 外泌体分离, 细胞外囊泡, 微流控, DNA适配体

Exosomes are small extracellular vesicles derived from parent cells, carrying nucleic acids, proteins, and other biomolecules. Due to their ability to reflect the physiological and pathological states of parent cells in real time, exosomes have significant potential in biomedical applications, including drug delivery, disease diagnosis, and therapeutic interventions. A key step in their application is the efficient separation and purification of exosomes from biological fluids (such as blood, saliva) or cell culture supernatants, ensuring the removal of impurities. Numerous separation techniques, including ultracentrifugation, ultrafiltration, size exclusion chromatography, polymer precipitation, and immunoaffinity capture, have been developed based on the size, density, charge, and composition of exosomes. Although ultracentrifugation is widely regarded as the gold standard for exosome isolation, each method has its advantages and limitations in terms of purity, efficiency, processing capacity, complexity, and convenience. Recently, the combination of different separation methods has emerged as a promising strategy. Moreover, advances in interdisciplinary fields, such as chemistry, materials science, biology, medicine, engineering, and mechanics, have led to the development of innovative separation technologies, including microfluidics, fluid flow-based methods, thermophoresis, lipid-based recognition, and DNA aptamer-based affinity. These novel techniques have substantially improved the efficiency and purity of exosome isolation. In this review, we first offer a comprehensive overview of both traditional and emerging separation methods, the advantages and disadvantages of each method were discussed and summarized. We also illustrate the latest progress and representative work in the exosome separation field. Finally, we put forward our own insights on the future development, including balancing between purity and yield, isolation of specific subpopulations of exosomes, standardization and automation separation and exploration of new separation technologies. We believe that significant breakthroughs in exosome separation will be achieved in the near future, and will contribute to the development of the biomedical applications. We hope this review will be helpful in promoting the development of exosome separation field.

Key words: exosome, exosome separation, extracellular vesicles, microfluidics, DNA aptamer