化学学报 ›› 2025, Vol. 83 ›› Issue (4): 415-427.DOI: 10.6023/A24120379 上一篇    下一篇

综述

离子吸附型稀土矿生物浸出技术研究进展

赵梦飞a,b, 韩赫兴b, 杨幼明a, 李庭刚a,b,c,d,e,*()   

  1. a 江西理工大学 冶金工程学院 赣州 341099
    b 中国科学院赣江创新研究院 中国科学院稀土重点实验室 江西省稀土清洁生产重点实验室 赣州 341003
    c 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室 中国科学院绿色过程制造创新研究院 战略金属资源绿色循环利用国家工程研究中心 北京市过程污染控制工程技术研究中心 北京 100190
    d 生物药制备与递送全国重点实验室 北京 100190
    e 中国科学院大学 北京 100049
  • 投稿日期:2024-12-24 发布日期:2025-02-26
  • 作者简介:

    赵梦飞, 2021年江西理工大学与中国科学院赣江创新研究院联合培养在读博士研究生, 主要研究方向为稀土生物浸出.

    韩赫兴, 博士, 中国科学院赣江创新研究院副研究员, 硕士生导师. 2021年博士毕业于中国科学技术大学, 2021~2024年国家纳米科学中心做博士后. 主要从事稀土生物冶金和分离、生物修复、微生物电化学技术和微生物-纳米材料耦合技术研究.

    杨幼明, 博士研究生导师. 主要从事稀有金属清洁冶金理论及工程技术研究, 善长复杂难处理低品位稀土精矿冶炼、离子型稀土矿提取、稀土分离、稀土金属冶金、钨与稀土二次资源高值利用技术开发. 主持国家、省市及企业委托项目50多项. 研究成果获国家科技进步二等奖1项、江西省科技进步一等奖1项和二等奖2项, 中国有色金属工业科技进步二等奖2项和三等奖1项, 中国稀土学会科学技术二等奖1项; 获国家授权发明专利26项; 在国内外刊物上发表学术论文90多篇; 参编稀土类教材2部.

    李庭刚, 博士, 中国科学院过程工程研究所/中国科学院赣江创新研究院研究员, 博士生导师, 中国科学院过程工程研究所“百人计划”、江西省“千人计划”入选者. 2008年获中国科学院生态环境研究中心博士学位, 2006~2008年在新加坡南洋理工大学进行博士联合培养, 2010~2019年在新加坡国立大学做博士后、特聘研究员, 2019年至今在中国科学院过程工程研究所工作, 环境生物技术课题组组长. 中国科学院赣江创新研究院双聘. 长期从事环境生物过程转化机理与能源资源化技术研究, 主要涉及土壤-地下水修复、高盐有机废水处理与资源化、稀土生物冶金、生物新能源制造、环境污染物定向生物转化与功能材料应用基础研究. 主持国家自然科学基金、国家重点研发计划项目课题、地方科技重大专项以及企业委托等科研项目. 近年来在Science子刊Science Advances, Biotechnology for Biofuels, Environmental Science & Technology, Biotechnology and Bioengineering, Water Research, Bioresource Technology, Journal of Biotechnology, Renewable Energy等主流期刊上发表论文40余篇, 申请和授权发明专利20余项. 担任巴塞尔公约亚太区中心化学品和废物环境管理智库专家, 中国自然资源学会废弃物资源化专业委员会委员, Clean Energy Science and Technology等期刊编委, Membrane期刊客座编辑, 荣获2021年中国产学研促进会科技合作创新奖, 2022年中国发明协会发明创业成果奖二等奖.

  • 基金资助:
    江西省千人计划(JXSQ2023201003); 鄂尔多斯市科技重大专项(2022EEDSKJZDZX014-2); 江西省技术创新引导类计划项目(20212BDH81029); 稀土产业基金(IAGM2020DB06)

Research Progress on Bioleaching Technology for Ion-Adsorption Type Rare Earth Ores

Mengfei Zhaoa,b, Hexing Hanb, Youming Yanga, Tinggang Lia,b,c,d,e()   

  1. a School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341099, China
    b Key Laboratory of Rare Earth, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341003, China
    c CAS Key Laboratory of Green Process and Engineering, Innovation Academy for Green Manufacture, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    d State Key Laboratory of Biopharmaceutical Preparation and Delivery, Beijing 100190, China
    e University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-24 Published:2025-02-26
  • Contact: E-mail: tgli@ipe.ac.cn
  • Supported by:
    Thousand Talents Program of Jiangxi Province, China(JXSQ2023201003); Science and Technology Major Program of Ordos City(2022EEDSKJZDZX014-2); Technological Innovation Guidance Program of Jiangxi Province(20212BDH81029); Rare Earth Industry Fund(IAGM2020DB06)

稀土需求的日益增加极大考验了稀土资源的开发, 但作为中重稀土资源主要供应链的离子吸附型稀土矿, 传统化学开采造成了严重的生态破坏. 为解决稀土开采过程中存在的污染问题, 生物浸出技术日益受到关注. 研究人员从浸取理论、工艺等方面展开了一系列探索. 本文综述了离子吸附型稀土矿中稀土元素赋存形态、浸出理论发展和稀土生物浸出过程, 包括其机理、影响因素和最新研究进展. 稀土的生物浸出受到多种因素的影响, 提高稀土的生物浸出效率, 其本质是提高微生物的活性和代谢产物的浓度, 或降低有毒物质影响. 本综述对生物浸出过程的总结和分析, 可为离子吸附型稀土矿生物绿色开采和稀土微生物开采技术的发展提供一定的支持.

关键词: 离子吸附型稀土矿, 生物浸出, 浸出剂, 绿色开采, 浸出理论

The growing demand for rare earth elements (REEs) has posed significant challenges to their exploitation. Traditional chemical extraction methods of ion-adsorption type rare earth ores (IAREOs), which constitute the primary supply chain for medium and heavy rare earth resources, have caused severe ecological damage. Bioleaching technology has emerged as a promising solution to address the pollution issues in rare earth mining processes. This review comprehensively examines the occurrence states of REEs in IAREOs, the evolution of REEs leaching theory, and focuses on the bioleaching process. Initially, it introduces the genesis and characteristics of different REEs occurrence states in IAREOs and describes the development of leaching theories for IAREOs. The review then systematically explores bioleaching modes, key parameters, influencing factors, and mechanisms. Different bioleaching modes have their specific advantages. In contact bioleaching, microbial activity and metabolic processes may be inhibited by the metal ions leached and the toxic compounds present in the minerals or materials. On the other hand, non-contact bioleaching could avoid this issue while it requires additional facilities and results in a high cost. The choice of bioleaching mode needs to consider factors such as the type of minerals, the types of microorganisms, and operational costs, seeking a balance among these multiple factors. The efficiency of bioleaching is jointly influenced by microbial species and their metabolic products, cultivation conditions, and mineral types. To improve the performance of the bioleaching process, it is essential to consider several physicochemical and microbial factors that affect the bioleaching efficiency of REEs. Fundamentally, improving bioleaching efficiency involves enhancing microbial activity and metabolite concentration while minimizing, or eliminating the inhibitory effects of toxic substances on microbial activity and metabolic processes. The bioleaching mechanisms of IAREOs primarily comprise acid dissolution and subsequent ion exchange mechanisms, complexation-promoted dissolution mechanisms, and intracellular uptake mechanisms. The dominant mechanisms of bioleaching change with different environmental conditions. Bioleaching is often a synergistic process involving acid dissolution and complexation, with the predominance of either process depending on the pH value of solution, the acid dissociation constants (pKa) of the functional groups, and the stability of the formed complexes. In terms of biological uptake, the overall effectiveness is determined by the dynamic balance of multiple factors, which also influences the final rare earth recovery rate obtained through cell recovery. The ecological impact of bioleaching on mining areas is thoroughly examined. Through microbial metabolism and chemical speciation transformation, bioleaching technology significantly reduces the toxicity and mobility of heavy metals in residues, thereby minimizing potential environmental hazards and laying the foundation for rapid ecological restoration. Compared to pyrometallurgical or hydrometallurgical methods, bioleaching demonstrates superior environmental and economic advantages, reducing environmental pollution and ecological risks associated with mineral extraction, while enabling rapid recovery of ecology. Finally, this review addresses current challenges in bioleaching technology and analyzes potential solutions. The summary and analysis of the bioleaching process presented in this review can provide support for the green bio-extraction of IAREOs and the development of microbial extraction technologies for REEs.

Key words: ion-adsorption type rare earth ores, bioleaching, leaching agent, green mining, leaching theory