化学学报 ›› 2025, Vol. 83 ›› Issue (5): 510-517.DOI: 10.6023/A25020041 上一篇    下一篇

研究论文

双氢键作用主导的十二硼烷-溶剂分子团簇理论研究

彭小改a, 胡竹斌a,*(), 孙海涛a,b,*()   

  1. a 华东师范大学 精密光谱科学与技术国家重点实验室 上海 200241
    b 山西大学 极端光学协同创新中心 太原 030006
  • 投稿日期:2025-02-14 发布日期:2025-04-22
  • 基金资助:
    国家自然科学基金(12274128); 国家自然科学基金(12250003); 国家自然科学基金(12204172)

Theoretical Study on Dihydrogen Bond Interaction Dominated Dodecaborate-Solvent Molecular Clusters

Xiaogai Penga, Zhubin Hua,*(), Haitao Suna,b,*()   

  1. a State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • Received:2025-02-14 Published:2025-04-22
  • Contact: * E-mail: zbhu@lps.ecnu.edu.cn; htsun@phy.ecnu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12274128); National Natural Science Foundation of China(12250003); National Natural Science Foundation of China(12204172)

双氢键作用(X—Hδ+…Hδ-—Y)因其在分子识别、催化脱氢以及药物设计等众多领域具有重要应用而受到越来越多的关注. 尽管传统氢键已经得到了广泛而深入的研究, 但相比于不常见的双氢键作用研究仍然相对缺乏. 本工作基于十二硼烷$\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$-溶剂分子团簇模型, 结合高水平量子化学理论计算, 对$\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$阴离子与十种不同溶剂分子(包括乙酸、硝基甲烷、乙腈、乙醛、水、甲醇、甲胺、氟代甲烷、乙烷和甲烷)之间的双氢键作用进行了系统性研究. 研究结果表明, 不同溶剂分子与$\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$之间形成了显著的双氢键作用(除氟代甲烷外), 其中乙酸的结合能最强(28.09 kcal•mol⁻1), 而甲烷的结合能最弱(3.58 kcal•mol⁻1). 能量分解分析表明, 极性溶剂分子中静电作用的贡献远高于非极性分子, 这导致与极性溶剂分子的结合能显著高于非极性溶剂分子, 而在非极性溶剂分子中色散和诱导作用则占主导. 基于分子中原子的量子理论(QTAIM)的电子密度拓扑分析进一步表明, 键临界点(BCP)处的电子密度(ρ)、拉普拉斯值(∇²ρ)和动能密度(G)等指标与平均结合能强度的趋势一致, 这为预测双氢键强度提供了有效指标. 此外, 基于态密度(DOS)分布的光谱模拟显示不同溶剂分子能够有效调控$\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$的特定分子轨道, 进而影响其光电离特性. 本研究探讨了硼基双氢键强度及其量子本质特征, 为未来基于双氢键作用主导的应用拓展提供了理论支撑.

关键词: 双氢键, 十二硼烷阴离子, 溶剂-溶质相互作用, 量子化学计算, 能量分解分析

Dihydrogen bonds (DHB, X—Hδ+…Hδ—Y) have attracted significant attention due to their remarkable applications in molecular recognition, catalytic dehydrogenation, and drug design, etc. Although conventional hydrogen bonds (HBs) have been extensively and deeply studied, systematic research on these uncommon DHBs remains limited. Using high-level quantum chemical calculations and a dodecaborate-solvent molecular cluster model, this work systematically investigates the DHB interactions between dodecaborate anion ($\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$) and ten different selected solvent molecules, including CH3COOH, CH3NO2, CH3CN, CH3CHO, H2O, CH3OH, CH3NH2, CH3F, CH3CH3, and CH4. The results indicate that all solvent molecules (except CH3F) form significant DHBs with $\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$ anion. Among them, CH3COOH exhibits the strongest binding energy (28.09 kcal•mol⁻1), while CH4 shows the weakest (3.58 kcal•mol⁻1). Energy decomposition analysis (EDA) reveals that the contribution of electrostatic interactions in polar solvents significantly exceeds that in non-polar solvents, resulting in substantially higher binding energies for polar solvents. However, the dispersion and induction interactions play a dominant role in non-polar solvents. Further quantum theory of atoms in molecules (QTAIM) topological analysis shows that the electron density (ρ), Laplacian (∇²ρ), and kinetic energy density (G) at bond critical points (BCPs) agree well with the trend of binding energy, providing effective indicators for predicting the strength of DHB. Additionally, spectral simulation based on density of states (DOS) distribution reveals that different solvent molecules can effectively regulate the specific molecular orbitals of $\mathrm{B}_{12} \mathrm{H}_{12}^{2-}$ anion, thereby affecting its photoionization properties. This study comprehensively explores the interaction strength and quantum fundamental characteristics of boron-based DHBs, providing theoretical support for the expansion of applications dominated by DHB interactions in the future.

Key words: dihydrogen bond, dodecaborate anion, solvent-solute interaction, quantum chemical calculation, energy decomposition analysis