| [1] |
(a) Tumir, L.-M.; Stojković, M. R.; Piantanida, I. Beilstein J. Org. Chem. 2014, 10, 2930.
pmid: 30725587
|
|
(b) Han, N.; Yang, Z.; Liu, Z.; Liu, H.; Yin, J. Nat. Prod. Commun. 2016, 11, 1181.
pmid: 30725587
|
| [2] |
(a) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
doi: 10.1039/c5cs00083a
pmid: 25882084
|
|
(b) Tito, A. D.; Abdulla, H. O.; Ravelli, D.; Protti, S.; Fagnoni, M. Beilstein J. Org. Chem. 2020, 16, 1476.
pmid: 25882084
|
|
(c) Talukdar, V.; Vijayan, A.; Katari, N. K.; Radhakrishnan, K. V.; Das, P. Adv. Synth. Catal. 2021, 363, 1202.
pmid: 25882084
|
| [3] |
(a) Jackman, M. M.; Cai, Y.; Castle, S. L. Synthesis 2017, 49, 1785.
pmid: 35285636
|
|
(b) Pratley, C.; Fenner, S.; Murphy, J. A. Chem. Rev. 2022, 122, 8181.
doi: 10.1021/acs.chemrev.1c00831
pmid: 35285636
|
| [4] |
(a) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2008, 73, 5558.
doi: 10.1021/jo800847h
pmid: 25594391
|
|
(b) Markey, S. J.; Lewis, W.; Moody, C. J. Org. Lett. 2013, 15, 6306.
pmid: 25594391
|
|
(c) Cai, Y.; Jalan, A.; Kubosumi, A. R.; Castle, S. L. Org. Lett. 2015, 17, 488.
doi: 10.1021/ol5035047
pmid: 25594391
|
| [5] |
(a) Alonso, R.; Campos, P. J.; Rodrguez, M. A.; Sampedro, D. J. Org. Chem. 2008, 73, 2234.
pmid: 23600463
|
|
(b) Mcburney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974.
pmid: 23600463
|
|
(c) McBurney, R. T.; Walton, J. C. J. Am. Chem. Soc. 2013, 135, 7349.
doi: 10.1021/ja402833w
pmid: 23600463
|
| [6] |
(a) Deb, I.; Yoshikai, N. Org. Lett. 2013, 15, 4254.
|
|
(b) Imran, M.; Wehrmann, C. M.; Chen, M. S. J. Am. Chem. Soc. 2020, 142, 38.
|
| [7] |
(a) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.
doi: 10.1002/anie.201411342
pmid: 25650356
|
|
(b) Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff, F.; Glorius, F. Angew. Chem., Int. Ed. 2019, 58, 10514.
pmid: 25650356
|
|
(c) Zheng, Y.; Wang, Z.-J.; Ye, Z.-P.; Tang, K.; Xie, Z.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, K.; Chen, X.-Q.; Yang, H. Angew. Chem., Int. Ed. 2022, 61, e202212292.
pmid: 25650356
|
|
(d) Ma, B.; Xia, Q.; Wang, D.; Jin, J.-K.; Li, Z.; Liang, Q.-J.; Sun, M.-Y.; Liu, D.; Liu, L.-J.; Shu, H.-X.; Yang, J.; Li, D.; He, J. Angew. Chem., Int. Ed. 2023, 62, e202300233.
pmid: 25650356
|
| [8] |
(a) Wan, J.-L.; Cui, J.-F.; Zhong, W.-Q.; Huang, J.-M. Chem. Commun. 2021, 57, 10242.
|
|
(b) Cai, Y.-M.; Liu, X.-T.; Xu, L.-L.; Shang, M. Angew. Chem., Int. Ed. 2024, 63, e202315222.
|
| [9] |
(a) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 5795.
pmid: 34367721
|
|
(b) Wang, C.; Wang, A.; Rueping, M. Angew. Chem., Int. Ed. 2017, 56, 9935.
pmid: 34367721
|
|
(c) Zhang, W.; Wang, C.; Wang, Q. ACS Catal. 2020, 10, 13179.
doi: 10.1021/acscatal.0c03621
pmid: 34367721
|
|
(d) Wang, C.; Liu, L. Org. Chem. Front. 2021, 8, 1454.
pmid: 34367721
|
|
(e) Su, L.; Sun, H.; Liu, J.; Wang, C. Org. Lett. 2021, 23, 4662.
pmid: 34367721
|
|
(f) Zhang, Q.; Lei, H.; Zhou, C.-Y.; Wang, C. Org. Lett. 2022, 24, 4615.
pmid: 34367721
|
|
(g) Yang, D.; Wang, C. Org. Chem. Front. 2023, 10, 2465.
pmid: 34367721
|
|
(h) Feng, Z.; Wu, L.; Zhou, C.-Y.; Wang, C. Org. Lett. 2024, 26, 9068.
pmid: 34367721
|
| [10] |
Liu, L.; Zhang, Q.; Wang, C. Org. Lett. 2022, 24, 5913.
|
| [11] |
(a) Li, Q.; Zhou, C.-Y.; Wang, C. Org. Lett. 2022, 24, 7654.
|
|
(b) Li, Q.; Zhou, C.-Y.; Wang, C. Org. Lett. 2022, 24, 9243.
|
| [12] |
(a) Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 6630.
pmid: 12769562
|
|
(b) Inoue, M.; Sumii, Y.; Shibata, N. ACS Omega 2020, 5, 10633.
pmid: 12769562
|
| [13] |
(a) Szlavik, L.; Gyuris, A.; Minarovits, J.; Forgo, P.; Molnar, J.; Hohmann, J. Planta Med. 2004, 70, 871.
|
|
(b) Zupko, I.; Rethy, B.; Hohmann, J.; Molnar, J.; Ocsovszki, I.; Falkay, G. In Vivo 2009, 23, 41.
|
| [14] |
Dong, Z.; Pezzato, C.; Sienkiewicz, A.; Scopelliti, R.; Fadaei-Tirani, F.; Severin, K. Chem. Sci. 2020, 11, 7615.
|
| [15] |
Loh, Y. K.; Melaimi, M.; Gembicky, M.; Munz, D.; Bertrand, G. Nature 2023, 623, 66.
|
| [16] |
The NHC dimer may also work as an electron donor for the SET process, see: Delfau, L.; Assani, N.; Nichilo, S.; Pecaut, J.; Philouze, C.; Broggi, J.; Martin, D.; Tomás-Mendivil, E. ACS Org. Inorg. Au 2023, 3, 136.
|
| [17] |
The HAS or hydrogen abstraction (HA) process is possibly involved. For related literature, see: (a) Bowman, W. R.; Storey, J. M. D. Chem. Soc. Rev. 2007, 36, 1803.
|
|
(b) Abdellaoui, M.; Oppel, K.; Vianna, A.; Soleilhavoup, M.; Yan, X.; Melaimi, M.; Bertrand, G. J. Am. Chem. Soc. 2024, 146, 2933.
|
| [18] |
Currently, a radical chain mechanism for this process cannot be excluded: The intermediate B, upon intramolecular addition to the aromatic ring followed by deprotonation with the base, would lead to a radical anion intermediate, which could be a potential radical chain carrier via SET to 1a.
|