化学学报    

研究展望

三维碳基集流体在高比能钠金属电池的研究展望

张智强a,b, 董德锐a,b, 曹柳悦*,c, 张斌伟*,a,b   

  1. a 重庆大学化学化工学院特种化学电源全国重点实验室,重庆 400044;
    b 重庆大学前沿交叉学科研究院先进电能源化学研究中心,重庆 400044;
    c 重庆大学材料科学与工程学院,重庆 400044
  • 投稿日期:2025-05-10
  • 作者简介:“中国青年化学家”专辑.
  • 基金资助:
    国家自然科学基金委面上项目(22279011).

Perspectives in 3D Carbon-based Current Collectors for High Specific Energy Sodium Metal Batteries

Zhiqiang Zhanga,b, Derui Donga,b, Liuyue Cao*,c, Binwei Zhang*,a,b   

  1. a State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044;
    b Center of Advanced Electrochemical Energy CAEE, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044;
    c College of Materials Science and Engineering, Chongqing University, Chongqing 400044
  • Received:2025-05-10
  • About author:*E-mail: l_cao@cqu.edu.cn ; binwei@cqu.edu.cn
  • Supported by:
    National Natural Science Foundation of China (22279011).

钠金属电池因其高理论比容量(1076 mA·h/g)和丰富的钠资源储量,被认为是下一代高能量密度电池的理想选择之一。然而,钠金属负极在循环过程中易形成枝晶,引发短路问题,导致电池循环寿命短、库仑效率低,甚至存在安全隐患。作为电池关键结构材料,集流体的形貌结构设计可调控钠金属的沉积/剥离行为,从而抑制枝晶生长。其中,三维碳集流体凭借其稳定的机械支撑、高比表面积和优化的离子传输路径,能有效抑制枝晶形成,显著提升电池的循环稳定性和电化学性能,成为最具潜力的集流体材料之一。本文系统综述了近年来碳集流体的制备工艺,重点分析了三维碳基集流体的性能优化策略,如原子掺杂提高亲钠特性、功能化改性三维碳材料电子结构、有机/无机复合策略提高界面稳定性、孔径结构调节三维碳基集流体表面反应等方法,并探讨了碳基材料的应用优势与研究进展。最后,对三维集流体在钠金属电池中的未来发展方向进行了展望。

关键词: 钠金属电池, 碳基集流体, 亲钠特性, 电子结构, 界面稳定性

Sodium metal batteries (SMBs) have emerged as promising next-generation energy storage systems due to sodium’s high theoretical specific capacity (1076 mAh/g) and natural abundance in the Earth’s crust (2.3%). However, dendrite formation during cycling leads to safety risks and rapid capacity degradation. This review provides a comprehensive analysis of three-dimensional (3D) carbon-based current collectors (CCs) as transformative platforms to regulate Na+ deposition. 3D carbon architectures—such as carbon nanotubes, graphene aerogels, and carbon cloth—offer high surface areas (500-1500 m2/g), robust mechanical frameworks, and optimized ion transport pathways, effectively reducing local current density and nucleation overpotential by 40-60%. Firstly, the fabrication technologies are critically discussed. The template methods enable precise pore control (1-50 mm) but risk structural collapse; sacrificial templates (e.g., MOFs) address this limitation, yielding composites with high conductivity and specific capacity (>600 mAh/g). 3D printing facilitates complex geometries—nitrogen-doped graphene aerogels (3DP-NGA) achieve dendrite-free deposition via pyrrolic-N defects. Pyrrolic-N defects guide uniform Na deposition. Electrospinning produces binder-free mesoporous carbon nanofibers (MCNFs), while CVD synthesizes graphitic domains with tunable porosity. We then discuss strategies to further enhance electrochemical performance. Atomic doping of 3D carbon materials can increase their sodium affinity, thereby promoting more uniform sodium deposition. Functionalization strategies—such as alloying and incorporating organic or inorganic composites—can further enhance sodiophilicity and help form a stable solid electrolyte interphase (SEI) during -cycling. In addition, rational pore design can effectively regulate sodium plating and stripping behavior, thereby suppressing dendrite growth. Finally, we also highlight future opportunities and challenges: in situ characterization to unravel structure performance relationships; machine learning-guided inverse design; roll-to-roll manufacturing of gradient-doped CCs targeting costs below $5/m2; and integration with solid-state electrolytes to achieve energy densities above 500 W·h/kg. Overall, this review establishes 3D carbon-based CCs as pivotal enablers for practical SMBs, bridging fundamental research and industrial implementation through multidisciplinary innovation.

Key words: Sodium metal batteries, Carbon-based current collectors, Sodium-philic characteristics, Electronic structure, Interface stability