化学学报    

综述

基于发光太阳能聚光器的透明光伏技术:效率瓶颈、材料设计与前景展望

黄静*,a, 赵乐妍a,b, 徐勃c   

  1. a南京理工大学 环境与生物工程学院 南京 210094
    b南京理工大学 中法工程师学院 南京 210094
    c南京理工大学 化学与化工学院 南京 210094
  • 投稿日期:2025-08-28
  • 通讯作者: *E-mail: jinghuang@njust.edu.cn; boxu@njust.edu.cn; leyanzhao@njust.edu.cn
  • 作者简介:黄静,博士,南京理工大学环境与生物工程学院副教授,硕士生导师。主要从事基于量子点的光伏器件和发光器件的研究,尤其在发光太阳能聚光器-光伏组件方面的研究。
    赵乐妍,2025年南京理工大学在读硕士研究生,主要从事铜铟硫量子点基发光太阳能聚光器的制备与应用研究。
    徐勃,博士,南京理工大学化学与化工学院教授,博士生导师。主要研究方向为能源光电材料与器件,聚焦于光伏电池与发光显示等领域。
  • 基金资助:
    国家自然科学基金(62304108);中央高校基本科研业务费专项资金(30923011030,30925020113)资助

Transparent Photovoltaics Based on Luminescent Solar Concentrators: Efficiency Bottlenecks, Material Design, and Future Prospects

Huang Jing*,a, Zhao Leyana,b, Xu Boc   

  1. aSchool of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    bSino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China
    cSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2025-08-28
  • Supported by:
    National Natural Science Foundation of China(62304108); Fundamental Research Funds for the Central Universitie(30923011030,30925020113)

透明光伏凭借其高透光特性可隐形集成于建筑及各种生活场景中,能为高密度城市节能减排提供创新解决方案。然而该技术在大规模应用前,仍需解决一些关键技术问题,包括在维持高视觉舒适度的基础上提升大面积器件的能量转换效率,同步优化器件稳定性与成本控制。为了应对这些技术挑战,本文重点探讨了发光太阳能聚光器-光伏(LSC-PV)组件这一种新型透明光伏的技术特点,包括高太阳光利用率,简便的制作工艺,以及灵活的产品设计。面对大面积LSC-PV效率限制的技术瓶颈,本文通过对LSC的光学效率影响因素的分析,介绍了通过合成或者合成后修饰提高LSC内发光材料的荧光量子产率的方法,同时讨论通过抑制发光材料在聚合物基质中的吸收-荧光光谱重叠系数提高LSC器件的波导效率的策略,以获得高效率的LSC-PV组件。最后,通过介绍LSC与其他功能器件的联用技术,表明透明光伏技术以及基于LSC-PV类型的透明光伏技术可通过持续的技术迭代与系统优化,成为实现"双碳"战略目标的重要技术路径。

关键词: 透明光伏, 发光太阳能聚光器, 光学效率, 荧光量子产率, 发光材料/聚合物复合材料

Transparent photovoltaic (TPV), with its high light transmittance, can be seamlessly integrated into buildings and various daily-life scenarios, offering an innovative solution for energy conservation and emission reduction in high-density cities. However, before large-scale application, several key technical challenges must be addressed, including enhancing the power conversion efficiency of large-area devices while maintaining high visual comfort, and simultaneously optimizing device stability and cost control. To tackle these challenges, this review focuses on the technical characteristics of a novel TPV technology: the luminescent solar concentrator-photovoltaic (LSC-PV) devices. These characteristics include high solar energy utilization, a straightforward fabrication process, and flexible product design. Confronting the technical bottleneck of efficiency limitations in large-area LSC-PVs, this paper analyzes the factors influencing the optical efficiency of LSCs. It highlights strategies for improving the photoluminescence quantum yield of luminescent materials within LSCs through synthesis or post-synthetic modification, and for enhancing the waveguide efficiency of LSC devices by suppressing the absorption-emission spectral overlap integral of luminescent materials within the polymer matrix, ultimately aiming to achieve high-efficiency LSC-PV devices. Finally, by introducing the integration technology of LSCs with other functional devices, it demonstrates that TPV technology, particularly LSC-PV-based TPV, through continuous technological iteration and system optimization, will become a crucial technical pathway for achieving the "carbon peak and carbon neutrality" strategic goals.

Key words: transparent photovoltaics, luminescent solar concentrators, optical efficiency, photoluminescence quantum yield, fluorophores/polymer nanocomposites