化学学报 ›› 2005, Vol. 63 ›› Issue (18): 1686-1692. 上一篇    下一篇

研究论文

胶体泡沫(CGA)排液动力学研究

燕永利*,1,张宁生2,屈撑囤3,杨志刚1,刘 立d   

  1. (1西安交通大学能源与动力工程学院 西安 710049)
    (西安石油大学 2石油工程学院 3化学化工学院 西安 710065)
    (4长庆石油勘探局工程技术研究院 西安 710021)
  • 投稿日期:2004-08-26 修回日期:2005-05-30 发布日期:2010-12-10
  • 通讯作者: 燕永利

Investigation of the Kinetics of Liquid Drainage from Colloidal Gas Aphrons

YAN Yong-Li*,a, ZHANG Ning-Sheng2, QU Cheng-Tun3, YANG Zhi-Gang1, LIU Li4   

  1. (1School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049)
    (2 College of Petroleum Engineering, 3Department of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065)
    (4 Research Institute of Engineering Technology, Changqing Petroleum Exploration Bureau, Xi'an 710021)
  • Received:2004-08-26 Revised:2005-05-30 Published:2010-12-10
  • Contact: YAN Yong-Li

分别对三种表面活性剂, 十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(HTAB)以及吐温80 (Tween 80)形成的胶体泡沫(CGA)的排液过程动力学进行了研究. 讨论了表面活性剂种类和浓度, 体系温度等对CGA排液过程的影响. 运用非线性最小二乘法拟合, 推出了表征CGA排液过程的动力学模型: VtVmaxtn/(Kntn), 式中, Vt表示时间t时的排液量(mL), t表示排液时间(s), Vmax表示CGA最大排液量(mL)的模型参数, K为模型参数, 表征CGA排液过程的半衰期t1/2, n为排液曲线反曲特征指数. 通过该模型计算出了表征CGA排液过程的速率常数kd和半衰期t1/2等参数. 并通过lnkdT-1的线性关系, 证明了该模型符合Arrhenius方程. 最后, 通过对CGA排液速率随时间的变化分析, 解析了CGA排液过程的“两段论”机理.

关键词: 胶体泡沫(CGA), 排液, 动力学模型

The kinetics of liquid drainage from colloidal gas aphrons (CGA) was investigated at various concentrations of sodium dodecyl sulphate (SDS), hexadecyltrimethyl ammonium bromide (HTAB), and Tween 80, respectively, under the conditions of different temperatures. The liquid drainage rates were determined by reading the volume of the liquid drained as a function of time. Effect of the surfactant type, concentration and system temperature on the kinetic stability of CGA was discussed. Drainage behavior was fitted by the empirical equation: VtVmaxtn/(Kntn), where Vt refers to the volume of drained liquid at time t, Vmax denotes the maximum volume of drained liquid, n describes the sigmoidal character of the curve and K is equal to the half-life t1/2 of drainage. Rate constant kd and the half-life t1/2 of liquid drainage could be calculated from parameters Vmax, K, and n. This kinetic model was tested with the use of the Arrhenius equation, which relates the logarithm of the kinetic constant (ln kd) linearly to the reciprocal of the elevated temperature (T-1). Two distinct stages of CGA drainage determined by two independent mechanisms were identified from analysis of the rate of liquid drainage as a function of time.

Key words: colloidal gas aphron, drainage, kinetic model