化学学报 ›› 2007, Vol. 65 ›› Issue (22): 2539-2543. 上一篇 下一篇
研究论文
程存归*,1,田玉梅1,金文英2
CHENG Cun-Gui*1; TIAN Yu-Mei1; JIN Wen-Ying2
提出了一种新的基于傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy, FTIR)的小波特征提取与支持向量机(SVM)分类方法以提高FTIR对早期肺癌的诊断准确率. 对肺正常组织、早期肺癌及进展期肺癌组织的FTIR, 利用连续小波(CW)多分辨率分析法提取9个特征量, 支持向量机把其分为正常组与非正常组(包括早期肺癌和进展期肺癌), 对正常组织、早期肺癌和进展期肺癌的识别, 多项式核函数和径向基函数的识别准确率最高. 多项式核函数对正常组织、早期肺癌和进展期肺癌的识别准确率分别为100%, 95%及100%; 径向基函数分别为100%, 95%和100%. 实验结果表明FTIR-CW-SVM模式分类方法对正常肺癌组织、早期肺癌及进展肺癌的识别具有较好的可行性.