化学学报 ›› 2009, Vol. 67 ›› Issue (22): 2536-2540. 上一篇    下一篇

研究论文

1,3,3—三硝基氮杂环丁烷的热安全性

赵宏安*,a,胡荣祖b,c,王喜军a,赵凤起b,高红旭b,张 海c,张晓亮a,冯 煜a,马海霞d   

  1. (a西北大学信息科学与技术学院 西安 710069) (b西安近代化学研究所 西安 710065) (c西北大学数学系/数据分析与计算化学研究所 西安 710069) (d西北大学化工学院 西安 710069)
  • 投稿日期:2009-03-11 修回日期:2009-06-21 发布日期:2009-07-24
  • 通讯作者: 赵宏安 E-mail:zhaqye@163.com
  • 基金资助:

    国家火炸药燃烧重点实验室基金资助

Thermal Safety of 1,3,3-trinitroazetidine(TNAZ)

Zhao, Hongan*,a,Hu, Rongzu b,c,Wang, Xijuna,Zhao, Fengqib,Gao, Hongxub ,Zhang, Haic,Zhang, Xiaolianga,Feng, Yua,Ma, Haixiad   

  1. (a College of Communication Science and Engineering, Northwest University, Xi'an 710069) (b Xi'an Modern Chemistry Research Institute, Xi'an 710065) (c Department of Mathematics/Institute of Data Analysis and Computation Chemistry, Northwest University, Xi'an 710069) (d College of Chemical Engineering, Northwest University, Xi'an 710069)
  • Received:2009-03-11 Revised:2009-06-21 Published:2009-07-24

借助不同加热速率(β)的非等温DSC曲线离开基线的初始温度(T0)onset温度(Te)和峰顶温度(Tp), Kissinger法和Ozawa法求得的热分解反应的表观活化能(EkEO)和指前因子(Ak), Hu-Zhao-Gao方程ln βiln[A0/(be0 or p0G(α))]   be0 or p0Tei or pi求得的be0 or p0, Zhao-Hu-Gao方程ln βiln[A0/((ae0 or p01)G(α))](ae0 or p01) ln Tei or pi求得的ae0 or p0, 微热量法确定的比热容(Cp), 以及密度(ρ)、热导率(λ)和分解热(Qd, 取爆热之半)数据, Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式、Zhao-Hu-Gao公式、Smith方程、Friedman公式Bruckman-Guillet公式, 计算了TNAZβ0时的T0, TeTp(T00, TeoTp0)、热爆炸临界温度(TbeTbp)、绝热至爆时间(tTlad)、撞击感度50%落高(H50)和热点起爆临界温度(Tcr), 得到了评价TNAZ热安全性的结果: TSADTTe0485.81 K, Tp0497.38 K, Tbeo499.50 K, Tbp0513.45 K, tTlad8.90 s (n0), tTlad8.96 s (n1), tTlad9.01 s (n2), H5028.88 cm, Tcr641.46 K (Troom293.15 K), Tcr658.89 K (Troom300 K), 表明: (1) TNAZ对热是稳定的; (2)撞击感度好于环三亚甲基三硝胺(RDX); (3)热点起爆临界温度高于RDX, 而界于1,3,5-三氨基-2,4,6-三硝基苯(TATB)和六硝基茋(HNS)之间.

关键词: TNAZ, 热安全性, 自加速分解温度, 热爆炸临界温度, 绝热至爆时间, 撞击感度特性落高, 撞击热点起爆临界温度

With the help of the initial temperature (T0), at which DSC curves deviate from the baseline, the onset temperature (Te) and maximum peak temperature (Tp) from the non-isothermal DSC curves of TNAZ at different heating rates (β), the thermal decomposition activation energy (Ek and EO) and pre-exponential constant (Ak) obtained by Kissinger’s method and Ozawa’s method, the value of be0 or p0 from Hu-Zhao-Gao’s equation ln βiln[A0/(be0 or p0G(α))]be0 or p0Tei or pi and the value of ae0 or p0 from Zhao-Hu-Gao’s equation ln βiln[A0/((ae0 or p01)G(α))](ae0 or p01) ln Tei or pi, the values of specific heat capacity (Cp) obtained by microcalorimetry, density (ρ) and thermal conductivity (λ), the decomposition heat (Qd, taking half-explosion heat), Zhang-Hu-Xie-Li’s formula, Hu-Yang-Liang-Xie’s formula, Hu-Zhao- Gao’s formula, Zhao-Hu-Gao’s formula, Smith’s equation, Friedman’s formula and Bruckman-Guillet’s formula, the values (T00, Teo and Tp0) of T0, Te and Tpcorresponding to β0, thermal explosion temperature (Tbe and Tbp), adiabatic time-to-explosion (tTlad), 50% drop height (H50) of impact sensitivity, critical temperature of hot-spot initiation (Tcr), of TNAZ were calculated. The following results of evaluating the thermal safety of TNAZ were obtained: TSADTTe0485.81 K, Tp0497.38 K, Tbeo499.50 K, Tbp0513.45 K, tTlad8.90 s (n0), tTlad8.96 s (n1), tTlad9.01 s (n2), H5028.88 cm, Tcr641.46 K (Troom293.15 K), Tcr658.89 K (Troom300 K), showing that (1) TNAZ is thermally stable; (2) its impact sensitivity is better than that of cyclotrimethylene trinitramine (RDX); (3) the critical temperature of hot-spot initiation is higher than that of RDX and between those of triaminotrinitrobenzene (TATB) and hexanitrostilbene (HNS).

Key words: TNAZ, thermal safety, self-accelerating decomposition temperature, critical temperature of thermal explosion, adiabatic time-to-explosion, drop height of impact sensitivity, critical temperature of hot-spot initiation caused by impact

中图分类号: