化学学报 ›› 2010, Vol. 68 ›› Issue (17): 1687-1691. 上一篇    下一篇

研究论文

氰基铝(AlCN)及其阴阳离子低能激发态的理论研究

刘悦婕,赵增霞,宋明星,张红星*,孙家锺   

  1. (吉林大学理论化学研究所理论化学计算国家重点实验室 长春 130023)
  • 投稿日期:2010-03-08 修回日期:2010-04-20 发布日期:2010-05-18
  • 通讯作者: 张红星 E-mail:zhanghx@mail.jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目

Theoretical Studies on the Low-Lying Excited States of Aluminum Cyanide (AlCN) and Its Ions

LIU Yue-Jie, ZHAO Zeng-Xia, SONG Ming-Xing, ZHANG Hong-Xing, SUN Jia-Zhong   

  1. (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023)
  • Received:2010-03-08 Revised:2010-04-20 Published:2010-05-18

C2v对称性下, 采用全活化空间自洽场(CASSCF)和多组态二级微扰理论(CASPT2)方法研究氰基铝(AlCN)及其阴阳离子的基态和低能激发态. 在ANO-L基组水平下, 计算了AlCN及其阴阳离子低能电子态的几何, 组态及其相互作用系数, 谐振频率, 绝热激发能, 垂直激发能和振子强度. 在CASSCF/CASPT2理论水平下, 计算得到AlCN的11Π电子态的绝热激发能为352.4 kJ•mol-1, 与实验值344.0 kJ•mol-1符合得很好. 另外, 预测AlCN的跃迁X1Σ→21Π发生在673.1 kJ•mol-1. 激发能和振子强度的计算为研究AlCN的吸收光谱提供理论指导.

关键词: 氰基铝, 激发态, 全活化空间自洽场, 多组态二级微扰理论

In C2v symmetry, the ground and low-lying excited states of aluminum cyanide (AlCN) and its ions have been studied by using the complete active space self-consistent field (CASSCF) and multiconfigurational second-order perturbation theory (CASPT2) methods. For the low-lying electronic states of AlCN and its ions, the geometries, leading configurations and configuration interaction coefficients, harmonic vibrational frequencies, adiabatic excitation energies, vertical excitation energies and oscillator strengths are calculated with the ANO-L basis sets. At the CASSCF/CASPT2 level, for the 11Π electronic state of AlCN, the adiabatic excitation energy is calculated to be 352.4 kJ•mol-1, which agrees well with the experimental value of 344.0 kJ•mol-1. In addition, the transition X1Σ→21Π of AlCN is predicted at 673.1 kJ•mol-1. The calculations of excitation energies and oscillator strengths provide a theoretical guidance to the investigation on absorption spectrum of AlCN.

Key words: aluminum cyanide, the excited state, complete active space self-consistent field, multiconfigurational second-order perturbation theory