化学学报 ›› 2009, Vol. 67 ›› Issue (10): 1081-1086. 上一篇 下一篇
研究论文
包 鑫 戴连奎
Bao, Xin Dai, Liankui*
为克服光谱分析中异常训练样本的影响, 提出了一种加权最小二乘支持向量机(WLS-SVM)的稳健化迭代算法. 针对原始WLS-SVM在收敛性和稳健性方面的不足, 提出了一种新的求取回归误差的方法, 从而从根本上解决了WLS-SVM的收敛性问题; 同时对原始算法求权值的步骤进行了修正, 采用回归误差的中值作为计算加权值的比较基准, 大幅度提高了WLS-SVM的稳健性. 将算法应用于光谱定量分析中, 实验结果证明了该方法是收敛的, 并且崩溃点在35%左右, 是一种有效的稳健建模方法.