化学学报 ›› 2012, Vol. 70 ›› Issue (03): 265-271.DOI: 10.6023/A1106211 上一篇    下一篇

研究论文

纯水溶液中的氢键交换反应路径

张霞a, 张强a, 赵东霞b   

  1. a 渤海大学化学化工与食品安全学院 锦州 121000;
    b 辽宁师范大学化学化工学院 大连 116029
  • 投稿日期:2011-06-21 修回日期:2011-08-09 发布日期:2011-10-06
  • 通讯作者: 张强 E-mail:zhangqiang@bhu.edu.cn
  • 基金资助:

    国家自然科学基金(No. 20873055)资助项目.

Transition Pathways of Hydrogen Bond Exchanging Reaction in Pure Water

Zhang Xiaa, Zhang Qianga, Zhao Dongxiab   

  1. a Institute of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121000;
    b Institute of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029
  • Received:2011-06-21 Revised:2011-08-09 Published:2011-10-06
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 20873055).

利用分子动力学模拟方法对纯水溶液的氢键转化动力学性质进行了深入的微观探讨, 溶液中非氢键构型为寿命较短(0.1~0.2 ps)的过渡态构型, 我们发现氢键交换通过两种过渡构型完成, 氢键角度扭曲激发后与氢键第一壳层水分子沿路径1 交换, 氢键径向拉伸激发后与氢键第二壳层水分子沿路径2 交换, 过渡态路径的选择具有温度依赖性. 氢键转化需在旧氢键受体氢键过量和新氢键受体氢键不足, 同时满足交换反应空间结构要求下才能完成. 氢键交换反应对水分子平动和转动行为起着决定作用.

关键词: 氢键交换反应, 分子动力学模拟, 过渡态, 氢键寿命

Hydrogen bond (H-bond) kinetic of pure water was explored extensively by molecular dynamic simulations. The non-H-bond configuration should be considered as a transition state with a short lifetime scale of 0.1~0.2 ps. Two types of transition states were found, by which the H-bond exchanging reactions took place. Distortion of one H-bond stimulates the H-bond exchanging reaction with the water molecule in the first coordination shell by path 1. Elongation of one H-bond stimulates the H-bond exchanging reaction with the water molecule in the second coordination shell by path 2. The possibility of two paths in the process of H-bond exchange varies with the temperature. The H-bond exchanging events usually take place between the over-coordinated and under-coordinated H-bond acceptors, as well as a proper geometric configurations required. The H-bond exchanging reactions play a key role in the translational and rotational motions of water molecules.

Key words: hydrogen bond exchanging reaction, molecular dynamic simulation, transition state, hydrogen bond lifetime