化学学报 ›› 2004, Vol. 62 ›› Issue (14): 1272-1276. 上一篇    下一篇

液相卤化银纳米微粒的界面荧光和共振散射光谱特性

蒋治良, 翟好英, 章表明, 刘庆业, 李廷盛   

  1. 广西师范大学资源与环境学系, 桂林, 541004
  • 投稿日期:2003-12-23 修回日期:2004-03-20 发布日期:2014-02-17
  • 通讯作者: 蒋治良,E-mail:zljiang@mailbox.gxnu.edu.cn E-mail:zljiang@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(No.20365001)和广西自然科学基金资助项目.

Interface Fluorescence and Resonance Scattering Spectral Properties of AgX Nanoparticles in Liquid Phase

JIANG Zhi-Liang, ZHAI Hao-Ying, ZHANG Biao-Ming, LIU Qing-Ye, LI Ting-Sheng   

  1. Department of Resource and Environmental Science, Guangxi Normal University, Guilin 541004
  • Received:2003-12-23 Revised:2004-03-20 Published:2014-02-17

液相卤化银纳米微粒的共振散射光谱和发射光谱表明,AgCl和AgBr纳米微粒均在330,400,470和680 mm处产生4个共振散射峰,在340,400和470 nm处产生三个荧光峰.AgI纳米微粒在340,400,437,470和680nm处产生5个共振散射峰;除在340,400和470nm处产生3个荧光峰外,在434nm处有一最强的荧光峰.卤化银纳米微粒体系的浓度对共振散射信号的影响与浓度对荧光强度的影响一致,AgCl,AgBr和AgI体系的共振散射光信号强度分别约为荧光信号的110,130和80倍,即荧光与共振散射之间存在相关性.提出了液相AgX纳米微粒荧光产生机理,解释了荧光与共振散射之间存在相关性的原因.

关键词: 液相卤化银纳米微粒, 界面荧光, 共振散射

The resonance scattering and emission spectra of AgX (X=Cl, Br and I) nanoparticles in liquid phase show that AgCl and AgBr nanoparticles all exhibit four resonance scattering peaks at 330, 400, 470 and 680 nm, and three fluorescence peaks at 340, 400 and 470 nm.While AgI nanoparticles produce five resonance scattering peaks at 340, 400, 437, 470 and 680 nm, a strongest fluorescence peak at 434 nm and three other peaks at 340, 400 and 470 nm.The influence of the concentration of the system of AgX nanoparticles on the resonance scattering signals is consistent with that on the fluorescence intensities.And the resonance scattering intensity of AgCl, AgBr and AgI systems is 110, 130 and 80 times of the fluorescence intensity, respectively.That is, the relationship between fluorescence and resonance scattering is exist.The fluorescence mechanism of AgX nanoparticles has been proposed, and the reason that there is the correlation between the fluorescence and resonance scattering has been explained.

Key words: AgX nanoparticle in liquid phase, interface fluorescence, resonance scattering