化学学报 ›› 2014, Vol. 72 ›› Issue (8): 927-934.DOI: 10.6023/A14040286 上一篇    下一篇

研究论文

聚丙烯腈基活性炭铜掺杂材料的制备及其电容性能

马占玲a, 宋艳芳b, 夏永姚b, 何军坡a   

  1. a 聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433;
    b 上海市分子催化和功能材料重点实验室 复旦大学化学系 上海 200433
  • 投稿日期:2014-04-16 发布日期:2014-05-30
  • 通讯作者: 何军坡 E-mail:jphe@fudan.edu.cn
  • 基金资助:
    项目受国家科技部“973”,“863”基金(Nos. 2008AA032102,2011CB605701)资助.

Preparation and Capacitance of Copper-Doped Activated Carbon From Polyacrylonitrile (PAN) Precursor

Ma Zhanlinga, Song Yanfangb, Xia Yongyaob, He Junpoa   

  1. a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433;
    b Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433
  • Received:2014-04-16 Published:2014-05-30
  • Supported by:
    Project supported by the Ministry of Science and Technology of China (Nos. 2008AA032102, 2011CB605701).

聚丙烯腈是一类常见的活性炭前驱体. 本研究以聚丙烯腈为原料,利用化学络合方法来制备铜金属掺杂活性炭. 制备主要分为3步:(1)聚丙烯腈中的腈基被羟胺官能化生成含有大量羟基和氨基的淡黄色肟基化产物;(2)铜离子和肟基复合,生成墨绿色的复合物;(3)复合物在高温下炭化生成铜掺杂活性炭. 该方法并没有直接对活性炭进行掺杂,而是通过对原材料聚丙烯腈进行官能化反应,使之与水溶液中铜离子发生高效络合过程,确保了活性炭原材料掺杂金属的有效性. 将铜掺杂聚丙烯腈原料进行化学活化,得到铜掺杂活性炭. 对其进行循环伏安和充放电测试,发现掺杂金属后电容值由原来的208.3 F/g增加至289.7 F/g (0.5 A/g下测试),电容值约提升了40%. 然而掺杂铜以后,其循环性能有一定程度的下降,这可能是因为掺杂的铜发生了不可逆氧化还原反应,导致其相对循环稳定性下降.

关键词: 聚丙烯腈, 络合过程, 铜金属掺杂, 活性炭

Polyacrylonitrile (PAN) is a widely used precursor for activated carbon using KOH as the activation agent. In the present work, we prepared activated carbon with high BET surface (2241 m2/g) by optimizing the activation temperature and the dosage of KOH. On this basis, we obtained PAN-based activated carbon doped with copper. The preparation is through a three-step process: (1) the nucleophilic reaction between nitrile groups and hydroxylamine (NH2OH), introducing multi amino and oximido groups in PAN; (2) complexation of Cu2+ with oximido groups on modified PAN, resulting in a dark green colored complex; (3) carbonization of the complex in the presence of KOH at high temperature. The present method of doping-in-precursor may provides more homogeneous blending of metal in carbon matrix than simple mixing of activated carbon and copper. The copper-doped activated carbon was characterized by XPS, FT-IR and SEM. The doped copper undergoes the Faradic reactions to produce pseudo-capacitance, thus improving the specific capacitance of activated carbon electrodes from 208.3 F/g to 289.7 F/g (0.5 A/g). Nevertheless, the cycle stability of copper-doped activated carbon was lower than that of pure activated carbon after several recharge cycles. This was probably caused by the irreversible Faradic reaction of doped copper.

Key words: polyacrylonitrile, chemical complexation method, copper-doping, activated carbon