化学学报 ›› 2021, Vol. 79 ›› Issue (3): 303-318.DOI: 10.6023/A20100457 上一篇 下一篇
综述
周家正a,c, 徐啸a,c, 段碧雯a,c, 石将建a, 罗艳红a,c,d, 吴会觉a, 李冬梅a,c,d,*(), 孟庆波a,b,c,d,*()
投稿日期:
2020-10-04
发布日期:
2020-12-31
通讯作者:
李冬梅, 孟庆波
作者简介:
周家正, 本科毕业于中南大学能源学院, 现为中国科学院物理研究所博士研究生, 导师为孟庆波研究员和李冬梅研究员, 研究方向是基于湿化学法制备铜锌锡硫硒太阳能电池及其性能研究. |
徐啸, 本科毕业于浙江工业大学理学院, 现为中国科学院物理研究所博士研究生, 导师为孟庆波研究员和罗艳红研究员. 研究方向为高效率铜锌锡硫硒太阳能电池. |
段碧雯, 本科毕业于华中科技大学化学与化工学院, 现为中国科学院物理研究所博士研究生, 导师为孟庆波研究员. 研究方向高效率锌黄锡矿太阳能电池. |
石将建, 现任中国科学院物理研究所副研究员, 2017年中国科学院物理研究所获得博士学位. 研究方向为新型薄膜太阳能电池载流子动力学、界面电荷转移和表面改性研究. |
罗艳红, 现任中国科学院物理研究所研究员, 2003年中国科学院化学研究所获得博士学位, 2003~2005年在日本物质科学研究所(NIMS)担任特聘研究员. 研究方向为锌黄锡矿太阳能电池和钙钛矿太阳能电池. |
吴会觉, 现任中国科学院物理研究所清洁能源重点实验室高级工程师, 2011年中国科学院理化技术研究所获得博士学位, 研究方向为铜锌锡硫硒太阳能电池和钙钛矿太阳能电池. |
李冬梅, 现任中国科学院物理研究所研究员, 1999年吉林大学化学学院获得博士学位, 2000~2003年在日本大学和英国Cardiff大学博士后, 研究方向是新型薄膜太阳能材料与器件, 包括铜锌锡硫硒和钙钛矿太阳能电池及光分解水制氢. |
孟庆波, 现任中国科学院物理研究所研究员, 1997年中国科学院长春应化所获得博士学位, 1997~2002年先后在中科院物理所博士后、日本科技厅特别研究员、东京大学和日本神奈川科学技术研究院专任研究员. 2001年入选中科院“引进人才计划”, 2005年获得中科院“引进人才计划”优秀奖, 2007年获得基金委“杰出青年基金”资助, 2013年入选科技北京“百名领军人才”, 2014年基金委创新群体学术带头人. 研究方向是太阳能材料和技术, 包括新型薄膜太阳能电池材料和器件的制备及性能研究、光催化材料的制备与性能研究等. |
基金资助:
Jiazheng Zhoua,c, Xiao Xua,c, Biwen Duana,c, Jiangjian Shia, Yanhong Luoa,c,d, Huijue Wua, Dongmei Lia,c,d,*(), Qingbo Menga,b,c,d,*()
Received:
2020-10-04
Published:
2020-12-31
Contact:
Dongmei Li, Qingbo Meng
Supported by:
文章分享
铜锌锡硫硒(CZTSSe)电池具有组成元素丰度高且环境友好、光吸收系数高、带隙可调、高稳定性等优点, 是一类非常有发展前景的新型薄膜太阳能电池. 目前, CZTSSe电池最高认证效率为12.6%, 与商品化铜铟镓硒(CIGS)电池相比仍然有较大差距, 特别是开路电压(VOC)和填充因子(FF)偏低. 开压损耗是制约CZTSSe器件效率进一步提升的关键因素之一. 其中, 吸收层带尾态和深能级缺陷及界面能级不匹配是开压损耗大的主因, 而Cu-Zn无序引起的铜锌替位(CuZn)与锌锡替位(SnZn)缺陷又是影响带尾态的关键因素, 因此, 减少CuZn和SnZn缺陷有助于提升VOC. 一价金属替位能有效改善带尾态、构建合适能带结构, 在一定程度上解决器件开压损耗问题. 但是, 有关一价金属替位如何影响CZTSSe电池性能, 仍然缺乏全面系统的概述. 本文综述了基于一价金属替位方法CZTSSe电池的研究进展. 首先介绍CZTSSe电池的发展历程、工作原理、制备工艺和关键材料等; 其次, 详细讨论一价金属替位的理论研究; 再次, 结合实验进展, 重点讨论一价金属部分替位及完全替位CZTSSe材料的制备及其对带尾态、界面缺陷和能带结构研究; 最后, 对一价金属替位研究的关键科学问题、未来发展潜力等进行讨论和展望, 并提出可能的解决思路.
周家正, 徐啸, 段碧雯, 石将建, 罗艳红, 吴会觉, 李冬梅, 孟庆波. 铜锌锡硫硒薄膜太阳能电池一价金属替位的研究进展[J]. 化学学报, 2021, 79(3): 303-318.
Jiazheng Zhou, Xiao Xu, Biwen Duan, Jiangjian Shi, Yanhong Luo, Huijue Wu, Dongmei Li, Qingbo Meng. Research Progress of Metal(I) Substitution in Cu2ZnSn(S,Se)4 Thin Film Solar Cells[J]. Acta Chimica Sinica, 2021, 79(3): 303-318.
CZTS | CZTSe | AZTS | AZTSe | |
---|---|---|---|---|
a/nm | 0.5461 | 0.5744 | 0.5850 | 0.6109 |
c/nm | 1.0854 | 1.1406 | 1.0886 | 1.1453 |
c/2a | 0.994 | 0.993 | 0.930 | 0.937 |
V/nm3 | 0.32369 | 0.37632 | 0.37255 | 0.42742 |
CZTS | CZTSe | AZTS | AZTSe | |
---|---|---|---|---|
a/nm | 0.5461 | 0.5744 | 0.5850 | 0.6109 |
c/nm | 1.0854 | 1.1406 | 1.0886 | 1.1453 |
c/2a | 0.994 | 0.993 | 0.930 | 0.937 |
V/nm3 | 0.32369 | 0.37632 | 0.37255 | 0.42742 |
制备方法 | 效率 | 替位量 | 开压/mV | 开压损耗χ | 结晶温度/℃ | 文献 |
---|---|---|---|---|---|---|
肼溶液, 旋涂法 | 12.6% | 0 | 513.4 | 57.94% | 500 | [ |
喷雾热解法 | 7.1% | 2% Ag | 670 | 55.61% | 600 | [ |
喷雾热解法 | 7.1% | 5% Ag | 343.8 | — | 530 | [ |
乙二醇甲醚, 旋涂法 | 7.12% | 10% Ag | 650 | — | 580 | [ |
二甲亚砜, 旋涂法 | 7.12% | 16% Ag | 373 | 43.46% | 530 | [ |
油胺, 热注入法 | 7.2% | 5% Ag | 370 | 45.07% | 500 | [ |
乙二醇甲醚, 旋涂法 | 7.24% | 7% Ag | 670 | 51.32% a | 600 | [ |
共蒸发法 | 7.6% | — | 428 | 52.14% | 540 | [ |
高温固相法 | 8% | 1% Ag | >590 | 51.85% a | 740 | [ |
直流溅射法 | 8.68% | 10% Ag | 406 | 48.36% | 550 | [ |
高温固相法 | 8.73% | 1% Ag+20% Cd | 664 | 53.33% | 740 | [ |
喷雾热解法 | 10% | 35% Ag | 477 | 52.71% | 470 | [ |
共蒸发法 | 10.2% | 10% Ag | 422.5 | 52.43% | 590 | [ |
硫醇-胺, 旋涂法 | 10.36% | 3% Ag | 448 | 53.78% | 480 | [ |
乙二醇甲醚, 旋涂法 | 10.8% | 5% Ag+25% Cd | 650 | 56.21% a | 600 | [ |
硫醇-胺, 旋涂法 | 11.2% | (5-30-5)% Ag | 464 | 56.52% b | 480 | [ |
二甲亚砜, 旋涂法 | 12.2% | 7% Li | 531 | 58.69% | 500 | [ |
制备方法 | 效率 | 替位量 | 开压/mV | 开压损耗χ | 结晶温度/℃ | 文献 |
---|---|---|---|---|---|---|
肼溶液, 旋涂法 | 12.6% | 0 | 513.4 | 57.94% | 500 | [ |
喷雾热解法 | 7.1% | 2% Ag | 670 | 55.61% | 600 | [ |
喷雾热解法 | 7.1% | 5% Ag | 343.8 | — | 530 | [ |
乙二醇甲醚, 旋涂法 | 7.12% | 10% Ag | 650 | — | 580 | [ |
二甲亚砜, 旋涂法 | 7.12% | 16% Ag | 373 | 43.46% | 530 | [ |
油胺, 热注入法 | 7.2% | 5% Ag | 370 | 45.07% | 500 | [ |
乙二醇甲醚, 旋涂法 | 7.24% | 7% Ag | 670 | 51.32% a | 600 | [ |
共蒸发法 | 7.6% | — | 428 | 52.14% | 540 | [ |
高温固相法 | 8% | 1% Ag | >590 | 51.85% a | 740 | [ |
直流溅射法 | 8.68% | 10% Ag | 406 | 48.36% | 550 | [ |
高温固相法 | 8.73% | 1% Ag+20% Cd | 664 | 53.33% | 740 | [ |
喷雾热解法 | 10% | 35% Ag | 477 | 52.71% | 470 | [ |
共蒸发法 | 10.2% | 10% Ag | 422.5 | 52.43% | 590 | [ |
硫醇-胺, 旋涂法 | 10.36% | 3% Ag | 448 | 53.78% | 480 | [ |
乙二醇甲醚, 旋涂法 | 10.8% | 5% Ag+25% Cd | 650 | 56.21% a | 600 | [ |
硫醇-胺, 旋涂法 | 11.2% | (5-30-5)% Ag | 464 | 56.52% b | 480 | [ |
二甲亚砜, 旋涂法 | 12.2% | 7% Li | 531 | 58.69% | 500 | [ |
[1] |
Yang, Y.; Zhu, C.; Lin, F.; Chen, T.; Pan, D.; Guo, X. Acta Chim. Sinica 2019, 77,964. (in Chinese) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
( 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益, 化学学报, 2019, 77,964.) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
|
[2] |
Yang, Y.; Lin, F.; Zhu, C.; Chen, T.; Ma, S.; Luo, Y.; Zhu, L.; Guo, X. Acta Chim. Sinica 2020, 78,217. (in Chinese)
doi: 10.6023/A19110411 pmid: cd375603-dc3c-460a-85d6-8e23173b025a |
( 杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益, 化学学报, 2020, 78,217.)
pmid: cd375603-dc3c-460a-85d6-8e23173b025a |
|
[3] |
Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78,382. (in Chinese)
doi: 10.6023/A20020032 |
( 王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78,382.)
|
|
[4] |
Hu, Y.; Wu, W.; Yu, L.; Luo, K.; Xu, X.; Li, Y.; Peng, Q. Acta Chim. Sinica 2020, 78,1246. (in Chinese)
doi: 10.6023/A20070282 |
( 胡瑜辉, 武文林, 于立扬, 骆开均, 徐小鹏, 李瑛, 彭强, 化学学报, 2020, 78, 1246.)
|
|
[5] |
Zhu, C.; Yang, Y.; Zhao, B.; Lin, F.; Luo, Y.; Ma, S.; Zhu, L.; Guo, X. Acta Chim. Sinica 2020, 78,1102. (in Chinese)
doi: 10.6023/A20060275 |
( 朱从潭, 杨英, 赵北凯, 林飞宇, 罗媛, 马书鹏, 朱刘, 郭学益, 化学学报, 2020, 78, 1102.)
|
|
[6] |
Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A. W. Y. Prog Photovolt. 2019, 28,3.
doi: 10.1002/pip.v28.1 |
[7] |
Fan, Y.; Qin, H.-L.; Mi, B.-X.; Gao, Z.-Q.; Huang, W. Acta Chim. Sinica 2014, 72,643. (in Chinese) dd5de443-4e4c-4810-b21a-b619675350fe
doi: 10.6023/A14040259 |
( 范勇, 秦宏磊, 密保秀, 高志强, 黄维, 化学学报, 2014, 72,643.) dd5de443-4e4c-4810-b21a-b619675350fe
doi: 10.6023/A14040259 |
|
[8] |
Shin, B.; Zhu, Y.; Bojarczuk, N. A.; Jay Chey, S.; Guha, S. Appl. Phys. Lett. 2012, 101,053903.
doi: 10.1063/1.4740276 |
[9] |
Li, J.; Zhang, Y.; Zhao, W.; Nam, D.; Cheong, H.; Wu, L.; Zhou, Z.; Sun, Y. Adv. Energy Mater. 2015, 5,1402178.
doi: 10.1002/aenm.201402178 |
[10] |
Karade, V.; Lokhande, A.; Babar, P.; Gang, M. G.; Suryawanshi, M.; Patil, P.; Kim, J. H. Sol. Energy Mater. Sol. Cells 2019, 200,109911.
doi: 10.1016/j.solmat.2019.04.033 |
[11] |
Platzer-Björkman, C.; Barreau, N.; Bär, M.; Choubrac, L.; Grenet, L.; Heo, J.; Kubart, T.; Mittiga, A.; Sanchez, Y.; Scragg, J.; Sinha, S.; Valentini, M. J. Phys. Energy 2019, 1,044005.
doi: 10.1088/2515-7655/ab3708 |
[12] |
Willi, K.; Thomas, S.; Erik, A.; Teoman, T.; Levent, G.; Dirk, H.; Lothar, W.; Clemens, H.; Jasmin, S.; Michael, H.; Michael, P. J. Appl. Phys. 2020, 127,165301.
doi: 10.1063/1.5142550 |
[13] |
Neuschitzer, M.; Lienau, K.; Guc, M.; Barrio, L. C.; Haass, S.; Prieto, J. M.; Sanchez, Y.; Espindola-Rodriguez, M.; Romanyuk, Y.; Perez-Rodriguez, A.; Izquierdo-Roca, V.; Saucedo, E. J. Phys. D: Appl. Phys. 2016, 49,125602.
doi: 10.1088/0022-3727/49/12/125602 |
[14] |
Li, J.-J.; Liu, X.-R.; Liu, W.; Wu, L.; Ge, B.-H.; Lin, S.-P.; Gao, S.-S.; Zhou, Z.-Q.; Liu, F.-F.; Sun, Y.; Ao, J.-P.; Zhu, H.-B.; Mai, Y.-H.; Zhang, Y. Solar RRL. 2017, 1,1700075.
doi: 10.1002/solr.201700075 |
[15] |
Yan, C.; Liu, F.-Y.; Song, N.; Ng, B. K.; Stride, J. A.; Tadich, A.; Hao, X.-J. Appl. Phys. Lett. 2014, 104,173901.
doi: 10.1063/1.4873715 |
[16] |
Lee, J.; Enkhbat, T.; Han, G.; Sharif, M. H.; Enkhbayar, E.; Yoo, H.; Kim, J. H.; Kim, S. Y.; Kim, J. H. Nano Energy 2020, 78,105206.
doi: 10.1016/j.nanoen.2020.105206 |
[17] |
Cui, X.; Sun, K.; Huang, J.; Yun, J. S.; Lee, C.-Y.; Yan, C.; Sun, H.; Zhang, Y.; Xue, C.; Eder, K.; Yang, L.; Cairney, J. M.; Seidel, J.; Ekins-Daukes, N. J.; Green, M.; Hoex, B.; Hao, X. Energy Environ. Sci. 2019, 12,2751.
doi: 10.1039/C9EE01726G |
[18] |
Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Adv. Energy Mater. 2014, 4,1301465.
doi: 10.1002/aenm.201301465 |
[19] |
Bourdais, S.; Choné, C.; Delatouche, B.; Jacob, A.; Larramona, G.; Moisan, C.; Lafond, A.; Donatini, F.; Rey, G.; Siebentritt, S.; Walsh, A.; Dennler, G. Adv. Energy Mater. 2016, 6,1502276.
doi: 10.1002/aenm.201502276 |
[20] |
Chen, S.; Walsh, A.; Gong, X. G.; Wei, S. H. Adv. Mater. 2013, 25,1522.
doi: 10.1002/adma.201203146 pmid: 23401176 |
[21] |
Shin, D.; Saparov, B.; Mitzi, D. B. Adv. Energy Mater. 2017, 7,1602366.
doi: 10.1002/aenm.201602366 |
[22] |
Duan, B.; Shi, J.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Sci. China Mater. 2020, 63,2371.
doi: 10.1007/s40843-020-1385-0 |
[23] |
Walsh, A.; Chen, S.; Wei, S.; Gong, X. Adv. Energy Mater. 2012, 2,400. 0150bfee-b42c-4693-a6ce-79b58c0799e7
doi: 10.1002/aenm.201100630 |
[24] |
Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B. Appl. Phys. Lett. 2013, 103,103506.
doi: 10.1063/1.4820250 |
[25] |
Li, J.; Wang, D.; Li, X.; Zeng, Y.; Zhang, Y. Adv. Sci. (Weinh). 2018, 5,1700744.
|
[26] |
Romanyuk, Y. E.; Haass, S. G.; Giraldo, S.; Placidi, M.; Tiwari, D.; Fermin, D. J.; Hao, X.; Xin, H.; Schnabel, T.; Kauk-Kuusik, M.; Pistor, P.; Lie, S.; Wong, L. H. J. Phys. Energy 2019, 1,044004.
doi: 10.1088/2515-7655/ab23bc |
[27] |
Haass, S. G.; Diethelm, M.; Werner, M.; Bissig, B.; Romanyuk, Y. E.; Tiwari, A. N. Adv. Energy Mater. 2015, 5,1500712.
doi: 10.1002/aenm.201500712 |
[28] |
Mainz, R.; Singh, A.; Levcenko, S.; Klaus, M.; Genzel, C.; Ryan, K. M.; Unold, T. Nat. Commun. 2014, 5,3133.
doi: 10.1038/ncomms4133 pmid: 24448477 |
[29] |
Hages, C. J.; Koeper, M. J.; Miskin, C. K.; Brew, K. W.; Agrawal, R. Chem. Mater. 2016, 28,7703.
doi: 10.1021/acs.chemmater.6b02733 |
[30] |
Bree, G.; Coughlan, C.; Geaney, H.; Ryan, K. M. ACS Appl. Mater. Interfaces 2018, 10,7117.
pmid: 29392941 |
[31] |
Wu, S.-H.; Chang, C.-W.; Chen, H.-J.; Shih, C.-F.; Wang, Y.-Y.; Li, C.-C. Chan, S.-W. Prog. Photovolt. 2017, 25,58.
doi: 10.1002/pip.v25.1 |
[32] |
Tian, Q.; Lu, H.; Du, Y.; Fu, J.; Zhao, X.; Wu, S.; Liu, S. Solar RRL. 2018, 2,1800233.
doi: 10.1002/solr.v2.12 |
[33] |
Guo, L.; Shi, J.; Yu, Q.; Duan, B.; Xu, X.; Zhou, J.; Wu, J.; Li, Y.; Li, D.; Wu, H.; Luo, Y.; Meng, Q. Sci. Bull. 2020, 65,738.
doi: 10.1016/j.scib.2020.01.005 |
[34] |
Yu, Q.; Shi, J.; Guo, L.; Duan, B.; Luo, Y.; Wu, H.; Li, D.; Meng, Q. Nano Energy 2020, 76,105042.
doi: 10.1016/j.nanoen.2020.105042 |
[35] |
Haass, S. G.; Andres, C.; Figi, R.; Schreiner, C.; Bürki, M.; Romanyuk, Y. E.; Tiwari, A. N. Adv. Energy Mater. 2018, 8,1701760.
doi: 10.1002/aenm.201701760 |
[36] |
Caballero, R.; Haass, S. G.; Andres, C.; Arques, L.; Oliva, F.; Izquierdo-Roca, V.; Romanyuk, Y. E. Front Chem. 2018, 6,5.
doi: 10.3389/fchem.2018.00005 pmid: 29435446 |
[37] |
Li, X.; Hou, Z.; Gao, S.; Zeng, Y.; Ao, J.; Zhou, Z.; Da, B.; Liu, W.; Sun, Y.; Zhang, Y. Solar RRL. 2018, 2,1800198.
doi: 10.1002/solr.v2.12 |
[38] |
Yan, C.; Sun, K.; Huang, J.; Johnston, S.; Liu, F.; Veettil, B. P.; Sun, K.; Pu, A.; Zhou, F.; Stride, J. A.; Green, M. A.; Hao, X. ACS Energy Lett. 2017, 2,930.
doi: 10.1021/acsenergylett.7b00129 |
[39] |
Kim, S.; Kim, K. M.; Tampo, H.; Shibata, H.; Niki, S. Appl. Phys. Express. 2016, 9,102301.
doi: 10.7567/APEX.9.102301 |
[40] |
Choubrac, L.; Bär, M.; Kozina, X.; Félix, R.; Wilks, R. G.; Brammertz, G.; Levcenko, S.; Arzel, L.; Barreau, N.; Harel, S.; Meuris, M.; Vermang, B. ACS Appl. Energy Mater. 2020, 3,5830.
doi: 10.1021/acsaem.0c00763 |
[41] |
Moore, J.; Hages, C.; Lundstrom, M.; Agrawa, R. 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 2012, pp.001475-001480.
|
[42] |
Neuschitzer, M.; Rodriguez, M. E.; Guc, M.; Marquez, J. A.; Giraldo, S.; Forbes, I.; Perez-Rodriguez, A; Saucedo, E. J. Mater. Chem. A 2018, 6,11759.
doi: 10.1039/C8TA02551G |
[43] |
Giraldo, S.; Neuschitzer, M.; Thersleff, T.; López-Marino, S.; Sánchez, Y.; Xie, H.; Colina, M.; Placidi, M.; Pistor, P.; Izquierdo-Roca, V.; Leifer, K.; Pérez-Rodríguez, A.; Saucedo, E. Adv. Energy Mater. 2015, 5,1501070.
doi: 10.1002/aenm.201501070 |
[44] |
Yuan, Z.-K.; Chen, S.; Xiang, H.; Gong, X.-G.; Walsh, A.; Park, J.-S.; Repins, I; Wei, S.-H. Adv. Funct. Mater. 2015, 25,6733.
doi: 10.1002/adfm.201502272 |
[45] |
Cui, Y.; Deng, R.; Wang, G.; Pan, D. J. Mater. Chem. 2012, 22,23136.
doi: 10.1039/c2jm33574c |
[46] |
Ananthoju, B.; Mohapatra, J.; Jangid, M. K.; Bahadur, D.; Medhekar, N. V.; Aslam, M. Sci. Rep. 2016, 6,35369.
doi: 10.1038/srep35369 pmid: 27748406 |
[47] |
Ghosh, A.; Chaudhary, D. K.; Biswas, A.; Thangavel, R.; Udayabhanu, G. RSC Adv. 2016, 6,115204.
doi: 10.1039/C6RA24149B |
[48] |
Xie, Y.; Zhang, C.; Yang, G.; Yang, J.; Zhou, X.; Ma, J. J. Alloys Compd. 2017, 696,938.
doi: 10.1016/j.jallcom.2016.12.043 |
[49] |
Hu, J.-Q.; Qin, C.-P.; Sun, S.-H.; Hu, Y.-M.; Zhu, Y. J. Adv. Phys. Chem. 2018, 7,55. (in Chinese)
doi: 10.12677/JAPC.2018.72007 |
( 胡俊强, 秦存鹏, 孙淑红, 胡永茂, 朱艳, 物理化学进展, 2018, 7,55).
|
|
[50] |
Li, W.; Liu, X.; Cui, H.; Huang, S.; Hao, X. J. Alloys Compd. 2015, 625,277.
doi: 10.1016/j.jallcom.2014.11.136 |
[51] |
Erslev, P. T.; Lee, J.; Hanket, G. M.; Shafarman, W.N; Cohen, J. D. Thin Solid Films 2011, 519,7296. 0e86075d-5083-44cc-accc-799dcaf200a0
doi: 10.1016/j.tsf.2011.01.368 |
[52] |
Simchi, H.; McCandless, B. E.; Kim, K.; Boyle, J. H.; Shafarman, W. N. Thin Solid Films 2013, 535,102.
doi: 10.1016/j.tsf.2012.11.061 |
[53] |
Boyle, J. H.; McCandless, B. E.; Shafarman, W. N.; Birkmire, R. W. J. Appl. Phys. 2014, 115,223504.
doi: 10.1063/1.4880243 |
[54] |
Edoff, M.; Jarmar, T.; Nilsson, N. S.; Wallin, E.; Hogstrom, D.; Stolt, O.; Lundberg, O.; Shafarman, W.; Stolt, L. IEEE J. Photovolt. 2017, 7,1789.
doi: 10.1109/JPHOTOV.2017.2756058 |
[55] |
Zhao, Y.; Yuan, S.; Kou, D.; Zhou, Z.; Wang, X.; Xiao, H.; Deng, Y.; Cui, C.; Chang, Q.; Wu, S. ACS Appl. Mater. Interfaces 2020, 12,12717.
pmid: 32101686 |
[56] |
Zhang, T.; Yang, Y.; Liu, D.; Tse, S. C.; Cao, W.; Feng, Z.; Chen, S.; Qian, L. Energy Environ. Sci. 2016, 9,3674.
doi: 10.1039/C6EE02352E |
[57] |
Xin, H.; Vorpahl, S. M.; Collord, A. D.; Braly, I. L.; Uhl, A. R.; Krueger, B. W.; Ginger, D. S.; Hillhouse, H. W. Phys. Chem. Chem. Phys. 2015, 17,23859.
doi: 10.1039/c5cp04707b pmid: 26302694 |
[58] |
Cabas-Vidani, A.; Haass, S. G.; Andres, C.; Caballero, R.; Figi, R.; Schreiner, C.; Márquez, J. A.; Hages, C.; Unold, T.; Bleiner, D.; Tiwari, A. N.; Romanyuk, Y. E. Adv. Energy Mater. 2018, 8,1801191.
doi: 10.1002/aenm.201801191 |
[59] |
Altamura, G.; Wang, M.; Choy, K. L. Sci. Rep. 2016, 6,22109.
pmid: 26916212 |
[60] |
Mule, A.; Vermang, B.; Sylvester, M.; Brammertz, G.; Ranjbar, S.; Schnabel, T.; Gampa, N.; Meuris, M.; Poortmans, J. Thin Solid Films 2017, 633,156.
doi: 10.1016/j.tsf.2016.11.027 |
[61] |
Yang, Y.; Huang, L.; Pan, D. ACS Appl. Mater. Interfaces 2017, 9,23878.
doi: 10.1021/acsami.7b07796 pmid: 28657705 |
[62] |
Duan, B.; Guo, L.; Yu, Q.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; Wu, S.; Zheng, Z.; Meng, Q. J. Energy Chem. 2020, 40,196.
doi: 10.1016/j.jechem.2019.03.029 |
[63] |
Mangelis, P.; Aziz, A.; da Silva, I.; Grau-Crespo, R.; Vaqueiro, P.; Powell, A. V. Phys. Chem. Chem. Phys. 2019, 21,19311.
pmid: 31451820 |
[64] |
Pyykkö, P. Phys. Rev. B 2012, 85,024115.
doi: 10.1103/PhysRevB.85.024115 |
[65] |
Chagarov, E.; Sardashti, K.; Kummel, A. C.; Lee, Y. S.; Haight, R.; Gershon, T. S. J. Chem. Phys. 2016, 144,104704.
pmid: 26979701 |
[66] |
Gershon, T.; Gunawan, O.; Gokmen, T.; Brew, K. W.; Singh, S.; Hopstaken, M.; Poindexter, J. R.; Barnard, E. S.; Buonassisi, T.; Haight, R. J. Appl. Phys. 2017, 121,174501.
|
[67] |
Lafond, A.; Guillot-Deudon, C.; Vidal, J.; Paris, M.; La, C.; Jobic, S. Inorg. Chem. 2017, 56,2712.
doi: 10.1021/acs.inorgchem.6b02865 pmid: 28186742 |
[68] |
Zhang, J.; Liao, J.; Shao, L.-X.; Xue, S.-W.; Wang, Z.-G. Chin. Phys. Lett. 2018, 35,083101.
doi: 10.1088/0256-307X/35/8/083101 |
[69] |
Gong, W.; Tabata, T.; Takei, K.; Morihama, M.; Maeda, T.; Wada, T. Phys. Status Solidi C 2015, 12,700.
doi: 10.1002/pssc.201400343 |
[70] |
Cui, H.; Liu, X.; Liu, F.; Hao, X.; Song, N.; Yan, C. Appl. Phys. Lett. 2014, 104,041115.
doi: 10.1063/1.4863951 |
[71] |
Sai Gautam, G.; Senftle, T. P.; Carter, E. A. Chem. Mater. 2018, 30,4543.
doi: 10.1021/acs.chemmater.8b00677 |
[72] |
Hsieh, Y.-T.; Han, Q.; Jiang, C.; Song, T.-B.; Chen, H.; Meng, L.; Zhou, H.; Yang, Y. Adv. Energy Mater. 2016, 6,1502386.
doi: 10.1002/aenm.201502386 |
[73] |
López-Marino, S.; Sánchez, Y.; Espíndola-Rodríguez, M.; Alcobé, X.; Xie, H.; Neuschitzer, M.; Becerril, I.; Giraldo, S.; Dimitrievska, M.; Placidi, M.; Fourdrinier, L.; Izquierdo-Roca, V.; Pérez- Rodríguez, A.; Saucedo, E. J. Mater. Chem. A 2016, 4,1895.
doi: 10.1039/C5TA09640E |
[74] |
Maeda, T.; Kawabata, A.; Wada, T. Phys. Status Solidi C 2015, 12,631.
doi: 10.1002/pssc.201400345 |
[75] |
Altamura, G.; Vidal, J. Chem. Mater. 2016, 28,3540.
doi: 10.1021/acs.chemmater.6b00069 |
[76] |
Larsen, J. K.; Scragg, J. J. S.; Ross, N.; Platzer-Björkman, C. ACS Appl. Energy Mater. 2020, 3,7520.
doi: 10.1021/acsaem.0c00926 |
[77] |
Gu, K.; Hao, R.; Guo, J.; Aierken, A.; Liu, X.; Chang, F.; Li, Y.; Wei, G.; Liu, B.; Wang, L.; Sun, S.; Ma, X. J. Mater. Sci. Mater. Electron. 2019, 30,20443.
doi: 10.1007/s10854-019-02383-w |
[78] |
You, X.; Huang, Y.; Xie, Z.; Liang, G.; Zhu, H.; Mai, Y. J. Alloys Compd. 2020, 842,155884.
doi: 10.1016/j.jallcom.2020.155884 |
[79] |
Yang, S.; Wang, S.; Liao, H.; Xu, X.; Tang, Z.; Li, X.; Wang, T.; Li, X.; Liu, D. J. Mater. Sci. Mater. Electron. 2019, 30,11171.
doi: 10.1007/s10854-019-01463-1 |
[80] |
Kaur, K.; Arora, K.; Behzad, B.; Qiao, Q.; Kumar, M. Nanotechnology 2019, 30,065706.
doi: 10.1088/1361-6528/aaf185 pmid: 30523904 |
[81] |
Gershon, T.; Lee, Y. S.; Antunez, P.; Mankad, R.; Singh, S.; Bishop, D.; Gunawan, O.; Hopstaken, M.; Haight, R. Adv. Energy Mater. 2016, 6,1502468.
doi: 10.1002/aenm.201502468 |
[82] |
Cherns, D.; Griffiths, I. J.; Jones, L.; Bishop, D. M.; Lloyd, M. A.; McCandless, B. E. ACS Appl. Energy Mater. 2018, 1,6260.
doi: 10.1021/acsaem.8b01274 |
[83] |
Oueslati, S.; Kauk-Kuusik, M.; Neubauer, C.; Mikli, V.; Meissner, D.; Brammertz, G.; Vermang, B.; Krustok, J.; Grossberg, M. Solar Energy 2020, 198,586.
doi: 10.1016/j.solener.2020.02.002 |
[84] |
Mwakyusa, L. P.; Leist, L.; Rinke, M.; Welle, A.; Paetzold, U. W.; Richards, B. S.; Hetterich, M. Thin Solid Films 2020, 709,138223.
doi: 10.1016/j.tsf.2020.138223 |
[85] |
Guchhait, A.; Su, Z.; Tay, Y. F.; Shukla, S.; Li, W.; Leow, S. W.; Tan, J. M. R.; Lie, S.; Gunawan, O.; Wong, L. H. ACS Energy Lett. 2016, 1,1256.
doi: 10.1021/acsenergylett.6b00509 |
[86] |
Jing, T.; Dai, Y.; Ma, X.; Wei, W.; Huang, B. J. Phys. Chem. C 2015, 119,27900.
doi: 10.1021/acs.jpcc.5b09522 |
[87] |
Hadke, S. H.; Levcenko, S.; Lie, S.; Hages, C. J.; Márquez, J. A.; Unold, T.; Wong, L. H. Adv. Energy Mater. 2018, 8,1802540.
doi: 10.1002/aenm.v8.32 |
[88] |
Kumar, J.; Ingole, S. J. Alloys Compd. 2017, 727,1089.
doi: 10.1016/j.jallcom.2017.08.222 |
[89] |
Jiang, Y.; Yao, B.; Li, Y.; Ding, Z.; Luan, H.; Jia, J.; Li, Y.; Shi, K.; Sui, Y.; Zhang, B. Mater. Sci. Semicond. Process. 2018, 81,54.
doi: 10.1016/j.mssp.2018.03.014 |
[90] |
Qi, Y.; Tian, Q.; Meng, Y.; Kou, D.; Zhou, Z.; Zhou, W.; Wu, S. ACS Appl. Mater. Interfaces 2017, 9,21243.
doi: 10.1021/acsami.7b03944 pmid: 28586190 |
[91] |
Qi, Y.-F.; Kou, D.-X.; Zhou, W.-H.; Zhou, Z.-J.; Tian, Q.-W.; Meng, Y.-N.; Liu, X.-S.; Du, Z.-L.; Wu, S.-X. Energy Environ. Sci. 2017, 10,2401.
doi: 10.1039/C7EE01405H |
[92] |
Yang, Y.; Kang, X.; Huang, L.; Pan, D. ACS Appl. Mater. Interfaces 2016, 8,5308.
pmid: 26837657 |
[93] |
Zhao, Y.; Han, X.; Xu, B.; Li, W.; Li, J.; Li, J.; Wang, M.; Dong, C.; Ju, P.; Li, J. IEEE J. Photovolt. 2017, 7,874.
doi: 10.1109/JPHOTOV.2017.2675993 |
[94] |
Huang, W.-C.; Wei, S.-Y.; Cai, C.-H.; Ho, W.-H.; Lai, C.-H. J. Mater. Chem. A 2018, 6,15170.
doi: 10.1039/C8TA02950D |
[95] |
Nguyen, T. H.; Kawaguchi, T.; Chantana, J.; Minemoto, T.; Harada, T.; Nakanishi, S.; Ikeda, S. ACS Appl. Mater. Interfaces 2018, 10,5455.
doi: 10.1021/acsami.7b14929 pmid: 29368914 |
[96] |
Sayed, M. H.; Schoneberg, J.; Parisi, J.; Gütay, L. Mater. Sci. Semicond. Process. 2018, 76,31.
doi: 10.1016/j.mssp.2017.12.007 |
[97] |
Hages, C. J.; Koeper, M. J.; Agrawal, R. Sol. Energy Mater Sol. Cells 2016, 145,342.
doi: 10.1016/j.solmat.2015.10.039 |
[98] |
Liu, N.; Xu, F.; Zhu, Y.; Hu, Y.; Liu, G.; Wu, L.; Wu, K.; Sun, S.; Hong, F. J. Mater. Sci. Mater. Electron. 2020, 31,5760.
doi: 10.1007/s10854-020-03146-8 |
[99] |
Su, Z.-H.; Li, W.-J.; Asim, G.; Fan, T. Y.; Wong, L. H. 2016 IEEE 43th Photovoltaic Specialists Conference (PVSC), Portland, OR, 2016, pp.0534-0538.
|
[100] |
Nakamura, S.; Maeda, T.; Tabata, T.; Wada, T. 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 2011, pp.002771-002774.
|
[101] |
Collord, A. D.; Hillhouse, H. W. Chem. Mater. 2016, 28,2067.
doi: 10.1021/acs.chemmater.5b04806 |
[102] |
Gong, Y.-C.; Zhang, Y.-F.; Jedlicka, E.; Giridharagopal, R.; Clark, J. A.; Yan, W.-B.; Niu, C.-Y.; Qiu, R.-C.; Jiang, J.-J.; Yu, S.-T.; Wu, S.-P.; Hillhouse, H. W.; Ginger, D. S.; Huang, W.; Xin, H. Sci. China Mater. 2020, 64,52.
doi: 10.1007/s40843-020-1408-x |
[103] |
Timmo, K.; Altosaar, M.; Pilvet, M.; Mikli, V.; Grossberg, M.; Danilson, M.; Raadik, T.; Josepson, R.; Krustok, J.; Kauk-Kuusik, M. J. Mater. Chem. A 2019, 7,24281.
doi: 10.1039/C9TA07768E |
[104] |
Nadenau, V.; Rau, U.; Jasenek, A.; Schock, H. W. J. Appl. Phys. 2000, 87,584.
doi: 10.1063/1.371903 |
[105] |
Lundberg, O.; Bodegård, M.; Malmström, J.; Stolt, L. Prog. Photovolt. 2003, 11,77.
doi: 10.1002/pip.462 |
[106] |
Lundberg, O.; Edoff, M.; Stolt, L. Thin Solid Films 2005, 480-481,520.
doi: 10.1016/j.tsf.2004.11.080 |
[107] |
Guo, H.; Ma, C.; Zhang, K.; Jia, X.; Li, Y.; Yuan, N.; Ding, J. Sol. Energy Mater. Sol. Cells 2018, 178,146.
doi: 10.1016/j.solmat.2018.01.022 |
[108] |
Gershon, T.; Sardashti, K.; Gunawan, O.; Mankad, R.; Singh, S.; Lee, Y. S.; Ott, J. A.; Kummel, A.; Haight, R. Adv. Energy Mater. 2016, 6,1601182.
doi: 10.1002/aenm.201601182 |
[109] |
Kim, S.; Lee, C. S.; Kim, S.; Chalapathy, R. B.; Al-Ammar, E. A.; Ahn, B. T. Phys. Chem. Chem. Phys. 2015, 17,19222.
doi: 10.1039/c5cp01758k pmid: 26134038 |
[110] |
Cheyns, D.; Kam, B.; Vasseur, K.; Heremans, P.; Rand, B. P. J. Appl. Phys. 2013, 113,043109.
doi: 10.1063/1.4789352 |
[111] |
Dong, L.; Cheng, S.; Lai, Y.; Zhang, H.; Jia, H. Thin Solid Films 2017, 626,168.
doi: 10.1016/j.tsf.2017.02.019 |
[112] |
Min, J. H.; Jeong, W. L.; Kim, K.; Lee, J. S.; Kim, K. P.; Kim, J.; Gang, M. G.; Hong, C. W.; Kim, J. H.; Lee, D. S. ACS Appl. Mater. Interfaces 2020, 12,8189.
doi: 10.1021/acsami.9b19909 pmid: 31994389 |
[113] |
Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N. Nat. Mater. 2013, 12,1107.
doi: 10.1038/nmat3789 pmid: 24185758 |
[1] | 张芬, 李霄琪, 韩世国, 邬发发, 刘希涛, 孙志华, 罗军华. 大尺寸二维卤化物钙钛矿铁电晶体的生长及偏振光电探测性能研究※[J]. 化学学报, 2022, 80(3): 237-243. |
[2] | 王璐, 高峻峰, 丁峰. 经典晶体生长理论在石墨烯CVD成核和连续生长中的应用[J]. 化学学报, 2014, 72(3): 345-358. |
[3] | 段俐,康琦,李根培. 溶菌酶晶体生长过程中的扩散传质问题[J]. 化学学报, 2009, 67(4): 307-312. |
[4] | 戴国亮, 彭玲, 解莹, 康琦, 胡文瑞. 分子间相互作用对蛋白质晶体生长的影响[J]. 化学学报, 2007, 65(17): 1767-1772. |
[5] | 于泳,陈万春,康琦,刘道丹,戴国亮,崔海亮. 配液结晶法制备溶菌酶蛋白质晶体的生长机理研究[J]. 化学学报, 2006, 64(12): 1284-1290. |
[6] | 戴国亮,代连花,于泳,谢莹. 异硫氰酸荧光素-溶菌酶的制备及晶体生长预研究[J]. 化学学报, 2005, 63(7): 559-561. |
[7] | 戴国亮, 于泳, 康琦, 胡文瑞. 溶菌酶晶体生长前期溶液中聚集体研究[J]. 化学学报, 2004, 62(8): 757-761. |
[8] | 戴国亮,胡文瑞. NaCl对液-液扩散法生长溶菌酶晶体的影响[J]. 化学学报, 2003, 61(4): 520-525. |
[9] | 董维阳,任瑜,周伟正,龙英才. 蒸汽相中含硼多孔玻璃自转变合成沸石——Ⅱ.自转变动力学[J]. 化学学报, 2003, 61(2): 251-255. |
[10] | 卢贵武,李春喜,汪文川,王子镐,夏海瑞,孙洵,高樟寿. 固—液界面阴离子集团构型的密度泛函理论研究[J]. 化学学报, 2003, 61(2): 181-185. |
[11] | 欧阳健明,段荔,何建华. 脂质体中不同种类羧酸钾对草酸钙晶体生长的调控作用[J]. 化学学报, 2003, 61(10): 1597-1602. |
[12] | 董维阳,任瑜,周伟正,龙英才. 蒸汽相中c轴取向连续完美单层B-AI-ZSM-5沸石膜的原位制备[J]. 化学学报, 2003, 61(10): 1521-1523. |
[13] | 赵继华. 超声场强化氢氧化铝结晶过程的研究[J]. 化学学报, 2002, 60(1): 81-86. |
[14] | 方必军,罗豪甦,吴永君,徐海清,殷之文. 弛豫基铁电单晶0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3的制备与 性能研究[J]. 化学学报, 2001, 59(9): 1430-1434. |
[15] | 姜雪宁,袁多荣,许东,吕孟凯,郭世义,于文涛,张光辉,方奇. 紫外倍频晶体硫氰酸汞镉的生长习性与形成机理研究[J]. 化学学报, 2001, 59(5): 724-728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||