化学学报 ›› 2021, Vol. 79 ›› Issue (4): 520-529.DOI: 10.6023/A20110526 上一篇 下一篇
所属专题: 多孔材料:金属有机框架(MOF)
研究论文
投稿日期:
2020-11-17
发布日期:
2021-02-05
通讯作者:
吴选军
Lei Yanga, Yujing Wua, Xuanjun Wua,*(), Weiquan Caib,c
Received:
2020-11-17
Published:
2021-02-05
Contact:
Xuanjun Wu
About author:
文章分享
常规的烯烃/烷烃冷冻加压精馏分离过程具有高能耗和低效率的特点, 吸附分离技术可以在温和条件下高效纯化烯烃分子而在烯烃/烷烃分离领域展现出广阔应用前景. 本工作采用高通量筛选技术从12723个真实金属-有机骨架(MOF)材料中筛选具有优异C4烯烃混合物选择性吸附性能的吸附剂, 用于1,3-丁二烯的分离纯化. 首先, 根据MOF材料的结构参数进行筛选获得了7681个具有合适孔径和比表面积的吸附剂. 然后, 采用分子力学方法计算出上述吸附剂的力学性能, 以UIO-66力学性能为阈值得到959个结构稳定的候选MOF材料. 接下来采用巨正则蒙特卡洛(GCMC)方法模拟出298 K、0.1 MPa下五元等摩尔C4烯烃混合物在不同候选MOFs中的选择性吸附行为, 根据候选MOFs对1,3-丁二烯的吸附性能分值(APS)进行排序, 得到具有最佳吸附分离性能的8种MOF材料. 通过定量构效关系、吸附等温线及理想吸附溶液理论等揭示了高吸附分离性能MOFs的结构特征, 利用穿透曲线模拟进一步验证了填充最优吸附剂RIGPEE01的固定床能够有效分离2-顺式丁烯/1,3-丁二烯双组分混合物. 最后, 通过径向分布函数和结合能计算分析, 确定RIGPEE01对1,3-丁二烯产生优先吸附的机理主要归因于Cu(I)强吸附位点、π键耦合效应和尺寸筛分效应. 本工作提出的高通量筛选方法以及从分子尺度理解MOF材料应用于烯烃分离机制的视角, 为进一步开发烯烃/烷烃混合物分离的新型吸附剂奠定了理论基础.
杨磊, 吴宇静, 吴选军, 蔡卫权. 面向C4烯烃混合物吸附分离的真实金属-有机骨架材料高通量筛选[J]. 化学学报, 2021, 79(4): 520-529.
Lei Yang, Yujing Wu, Xuanjun Wu, Weiquan Cai. High-throughput Screening of Real Metal-organic Frameworks for Adsorption Separation of C4 Olefins[J]. Acta Chimica Sinica, 2021, 79(4): 520-529.
Atom type | (ε/kB)/K | σ/nm | Atom type | (ε/kB)/K | σ/nm | Atom type | (ε/kB)/K | σ/nm |
---|---|---|---|---|---|---|---|---|
C | 52.84 | 0.343 | Cu | 2.516 | 0.311 | Cd | 114.73 | 0.254 |
H | 22.14 | 0.257 | Zn | 62.40 | 0.246 | Ag | 18.12 | 0.280 |
O | 30.19 | 0.312 | Co | 7.05 | 0.256 | Ni | 7.55 | 0.252 |
N | 34.72 | 0.326 | Mn | 6.54 | 0.264 | Fe | 6.54 | 0.259 |
Atom type | (ε/kB)/K | σ/nm | Atom type | (ε/kB)/K | σ/nm | Atom type | (ε/kB)/K | σ/nm |
---|---|---|---|---|---|---|---|---|
C | 52.84 | 0.343 | Cu | 2.516 | 0.311 | Cd | 114.73 | 0.254 |
H | 22.14 | 0.257 | Zn | 62.40 | 0.246 | Ag | 18.12 | 0.280 |
O | 30.19 | 0.312 | Co | 7.05 | 0.256 | Ni | 7.55 | 0.252 |
N | 34.72 | 0.326 | Mn | 6.54 | 0.264 | Fe | 6.54 | 0.259 |
MOFs | NBD/ (mol•kg–1) | SBD | APS | LCD/nm | PLD/nm | VSA/ (m2•cm–3) | Φ | OMS | Linkera | Q0st,BD/ (kJ•mol–1) |
---|---|---|---|---|---|---|---|---|---|---|
RIGPEE01 | 1.90 | 13.9 | 26.4 | 0.433 | 0.345 | 566 | 0.462 | Cu | L6 | 45.26 |
RIGPEE | 1.86 | 11.5 | 20.9 | 0.437 | 0.350 | 598 | 0.468 | Cu | L6 | 50.84 |
ETIPII | 2.28 | 6.57 | 15.0 | 0.441 | 0.363 | 795 | 0.523 | Zn | L1, L2 | 71.60 |
MORFEG | 1.53 | 8.06 | 12.3 | 0.480 | 0.349 | 714 | 0.471 | Cu | L5 | 43.19 |
IWELIG01 | 1.35 | 7.80 | 10.6 | 0.469 | 0.450 | 512 | 0.399 | none | L4 | 46.75 |
YUSGID | 1.04 | 9.96 | 10.3 | 0.450 | 0.372 | 753 | 0.425 | none | L8, L9 | 55.54 |
CUVTIX | 1.78 | 5.77 | 10.3 | 0.671 | 0.342 | 1159 | 0.506 | none | L7 | 37.40 |
FITHIA | 1.29 | 7.76 | 10.0 | 0.436 | 0.385 | 941 | 0.431 | Sc | L3 | 55.70 |
MOFs | NBD/ (mol•kg–1) | SBD | APS | LCD/nm | PLD/nm | VSA/ (m2•cm–3) | Φ | OMS | Linkera | Q0st,BD/ (kJ•mol–1) |
---|---|---|---|---|---|---|---|---|---|---|
RIGPEE01 | 1.90 | 13.9 | 26.4 | 0.433 | 0.345 | 566 | 0.462 | Cu | L6 | 45.26 |
RIGPEE | 1.86 | 11.5 | 20.9 | 0.437 | 0.350 | 598 | 0.468 | Cu | L6 | 50.84 |
ETIPII | 2.28 | 6.57 | 15.0 | 0.441 | 0.363 | 795 | 0.523 | Zn | L1, L2 | 71.60 |
MORFEG | 1.53 | 8.06 | 12.3 | 0.480 | 0.349 | 714 | 0.471 | Cu | L5 | 43.19 |
IWELIG01 | 1.35 | 7.80 | 10.6 | 0.469 | 0.450 | 512 | 0.399 | none | L4 | 46.75 |
YUSGID | 1.04 | 9.96 | 10.3 | 0.450 | 0.372 | 753 | 0.425 | none | L8, L9 | 55.54 |
CUVTIX | 1.78 | 5.77 | 10.3 | 0.671 | 0.342 | 1159 | 0.506 | none | L7 | 37.40 |
FITHIA | 1.29 | 7.76 | 10.0 | 0.436 | 0.385 | 941 | 0.431 | Sc | L3 | 55.70 |
[1] |
Liao, P.Q.; Huang, N.Y.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Science 2017, 356,1193.
|
[2] |
Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem. Int. Ed. 2017, 56,16282.
|
[3] |
Luna-Triguero, A.; Vicent-Luna, J.M.; Poursaeidesfahani, A.; Vlugt, T.J. H.; Sanchez-De-Armas, R.; Gomez-Alvarez, P.; Calero, S. ACS Appl. Mater. Interfaces 2018, 10,16911.
|
[4] |
Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem. Int. Ed. 2016, 55,13784.
|
[5] |
Sholl, D.S.; Lively, R.P. Nature 2016, 532,435.
|
[6] |
Cadiau, A.; Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Eddaoudi, M. Science 2016, 353,137.
|
[7] |
Mofarahi, M.; Sadrameli, M.; Towfighi, J. J. Chem. Eng. Data 2003, 48,1256.
|
[8] |
Grande, C.A.; Gascon, J.; Kapteijn, F.; Rodrigues, A.E. Chem. Eng. J. 2010, 160,207.
|
[9] |
Ma, X.L.; Williams, S.; Wei, X.T.; Kniep, J.; Lin, Y.S. Ind. Eng. Chem. Res. 2015, 54,9824.
|
[10] |
Sumida, K.; Rogow, D.L.; Mason, J.A.; Mcdonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Chem. Rev. 2012, 112,724.
|
[11] |
Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,11623.
|
[12] |
Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112,869.
|
[13] |
Furukawa, H.; Cordova, K.E.; O'keeffe, M.; Yaghi, O.M. Science 2013, 341,974.
|
[14] |
Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Chem. Rev. 2012, 112,782.
|
[15] |
Alduhaish, O.; Li, B.; Arman, H.; Lin, R.-B.; Zhao, J.C.-G.; Chen, B. Chin. Chem. Lett. 2017, 28,1653.
|
[16] |
Ghalei, B.; Wakimoto, K.; Wu, C.Y.; Isfahani, A.P.; Yamamoto, T.; Sakurai, K.; Higuchi, M.; Chang, B.K.; Kitagawa, S.; Sivaniah, E. Angew. Chem. Int. Ed. 2019, 58,19034.
|
[17] |
Yang, D.; Gates, B.C. ACS Catal. 2019, 9,1779.
|
[18] |
Sumer, Z.; Keskin, S. Ind. Eng. Chem. Res. 2017, 56,8713.
|
[19] |
Chiau Junior, M.J.; Wang, Y.; Wu, X.; Cai, W. Int. J. Hydrogen Energy 2020, 45,27320.
|
[20] |
Bao, Z.; Chang, G.; Xing, H.; Krishna, R.; Ren, Q.; Chen, B. Energy Environ. Sci. 2016, 9,3612.
|
[21] |
Xiang, S.C.; Zhang, Z.; Zhao, C.G.; Hong, K.; Zhao, X.; Ding, D.R.; Xie, M.H.; Wu, C.D.; Das, M.C.; Gill, R. Nat. Commun. 2011, 2,204.
|
[22] |
Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y. Science 2016, 353,141.
|
[23] |
Li, B.; Cui, X.; O'nolan, D.; Wen, H.-M.; Jiang, M.; Krishna, R.; Wu, H.; Lin, R.-B.; Chen, Y.-S.; Yuan, D. Adv. Mater. 2017, 29,1704210.1.
|
[24] |
Cadiau, A.; Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Eddaoudi, M. Science 2016, 353,137.
|
[25] |
Bae, Y.S.; Lee, C.Y.; Kim, K.C.; Farha, O.K.; Nickias, P.; Hupp, J.T.; Nguyen, S.T.; Snurr, R.Q. Angew. Chem. Int. Ed. 2012, 51,1857.
|
[26] |
Wang, H.; Dong, X.L.; Lin, J.Z.; Teat, S.J.; Jensen, S.; Cure, J.; Alexandrov, E.V.; Xia, Q.B.; Tan, K.; Wang, Q.N.; Olson, D.H.; Proserpio, D.M.; Chabal, Y.J.; Thonhauser, T.; Sun, J.L.; Han, Y.; Li, J. Nat. Commun. 2018, 9,11.
|
[27] |
Herm, Z.R.; Wiers, B.M.; Mason, J.A.; Van Baten, J.M.; Hudson, M.R.; Zajdel, P.; Brown, C.M.; Masciocchi, N.; Krishna, R.; Long, J.R. Science 2013, 340,960.
|
[28] |
Peng, L.; Zhu, Q.; Wu, P.L.; Wu, X.J.; Cai, W.Q. Phys. Chem. Chem. Phys. 2019, 21,8508.
|
[29] |
Qiao, Z.W.; Xu, Q.S.; Jiang, J.W. J. Mater. Chem. A 2018, 6,18898.
|
[30] |
Boyd, P.G.; Chidambaram, A.; Garcia-Diez, E.; Ireland, C.P.; Daff, T.D.; Bounds, R.; Gladysiak, A.; Schouwink, P.; Moosavi, S.M.; Maroto-Valer, M.M.; Reimer, J.A.; Navarro, J.a. R.; Woo, T.K.; Garcia, S.; Stylianou, K.C.; Smit, B. Nature 2019, 576,253.
|
[31] |
Nazarian, D.; Camp, J.S.; Sholl, D.S. Chem. Mater. 2016, 28,785.
|
[32] |
Wilmer, C.E.; Farha, O.K.; Bae, Y.S.; Hupp, J.T.; Snurr, R.Q. Energy Environ. Sci. 2012, 5,9849.
|
[33] |
Wang, L.; Fang, G.Y.; Yang, Q.Y. CIESC J. 2019, 70,1135. (in Chinese)
|
( 王磊, 方桂英, 阳庆元, 化工学报, 2019, 70,1135.)
|
|
[34] |
Yang, W.Y.; Liang, H.; Qiao, Z.W. Acta Chim. Sinica 2018, 76,785. (in Chinese)
|
( 杨文远, 梁红, 乔智威, 化学学报, 2018, 76,785.)
|
|
[35] |
Cai, C.Z.; Li, L.F.; Deng, X.M.; Li, S.H.; Liang, H.; Qiao, Z.W. Acta Chim. Sinica 2020, 78,427. (in Chinese)
|
( 蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78,427.)
|
|
[36] |
Liu, Z.L.; Li, W.; Liu, H.; Zhuang, X.D.; Li, S. Acta Chim. Sinica 2019, 77,323. (in Chinese)
|
( 刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77,323.)
|
|
[37] |
Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76,303. (in Chinese)
|
( 卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76,303.)
|
|
[38] |
Chung, Y.G.; Haldoupis, E.; Bucior, B.J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vogiatzis, K.D.; Milisavljevic, M.; Ling, S.; Camp, J.S.; Slater, B.; Siepmann, J.I.; Sholl, D.S.; Snurr, R.Q. J. Chem. Eng. Data 2019, 64,5985.
|
[39] |
Willems, T.F.; Rycroft, C.; Kazi, M.; Meza, J.C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149,134.
|
[40] |
Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. J. Am. Chem. Soc. 1992, 114,10024.
|
[41] |
Babarao, R.; Jiang, J. Langmuir 2008, 24,6270.
|
[42] |
Wu, X.J.; Zhao, P.; Fang, J.M.; Wang, J.; Liu, B.S.; Cai, W.Q. Acta Phys.-Chim. Sin. 2014, 30,2043. (in Chinese)
|
( 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权, 物理化学学报, 2014, 30,2043.)
|
|
[43] |
Skoulidas, A.I.; Sholl, D.S. J. Phys. Chem. B 2005, 109,15760.
|
[44] |
Wick, C.D.; Martin, M.G.; Siepmann, J.I. J. Phys. Chem. B 2000, 104,8008.
|
[45] |
Maerzke, K.A.; Schultz, N.E.; Ross, R.B.; Siepmann, J.I. J. Phys. Chem. B 2009, 113,6415.
|
[46] |
Karavias, F.; Myers, A.L. Mol. Simul. 1991, 8,51.
|
[47] |
Wu, X.; Wang, Y.; Cai, Z.; Zhao, D.; Cai, W. Chem. Eng. Sci. 2020, 226,115837.
|
[48] |
Wu, H.; Yildirim, T.; Zhou, W. J. Phys. Chem. Lett. 2013, 4,925.
|
[49] |
Dubbeldam, D.; Calero, S.; Ellis, D.E.; Snurr, R.Q. Mol. Simul. 2015, 42,81.
|
[50] |
Dubbeldam, D.; Walton, K.S.; Ellis, D.E.; Snurr, R.Q. Angew. Chem. Int. Ed. 2007, 46,4496.
|
[51] |
Wu, X.; Huang, J.; Cai, W.; Jaroniec, M. RSC Adv. 2014, 4,16503.
|
[52] |
Moghadam, P.Z.; Rogge, S.M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez- Gualdron, D.A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1,219.
|
[53] |
"Materials Studio", Accelrys Software Inc: San Diego, CA 92121, USA, 2001-2013.
|
[54] |
Wu, X.J.; Li, L.; Fang, T.G.; Wang, Y.T.; Cai, W.Q.; Xiang, Z.H. Phys. Chem. Chem. Phys. 2017, 19,9261.
|
[55] |
Wu, X.J.; Peng, L.; Xiang, S.C.; Cai, W.Q. Phys. Chem. Chem. Phys. 2018, 20,30150.
|
[56] |
Yang, R.T. Adsorbents: Fundamentals and Applications, John Wiley & Sons Inc., New Jersey, 2003.
|
[57] |
Ruthven, D.M.; Farooq, S.; Knaebel, K.S. Pressure Swing Adsorption, VCH Publisher, New Jersey, 1994.
|
[58] |
Goto, M.; Smith, J.M.; Mccoy, B.J. Chem. Eng. Sci. 1990, 45,443.
|
[59] |
Myers, A.L.; Prausnitz, J.M. AlChE J. 1965, 11,121.
|
[60] |
Golshan-Shirazi, S.; Guiochon, G. Anal. Chem. 1988, 60,2364.
|
[61] |
Ferreira, A.F. P.; Santos, J.C.; Plaza, M.G.; Lamia, N.; Loureiro, J.M.; Rodrigues, A.E. Chem. Eng. J. 2011, 167,1.
|
[62] |
Li, K.H.; Olson, D.H.; Seidel, J.; Emge, T.J.; Gong, H.W.; Zeng, H.P.; Li, J. J. Am. Chem. Soc. 2009, 131,10368.
|
[63] |
Chen, Y.Q.; Li, G.R.; Chang, Z.; Qu, Y.K.; Zhang, Y.H.; Bu, X.H. Chem. Sci. 2013, 4,3678.
|
[64] |
Simon, C.M.; Smit, B.; Haranczyk, M. Comput. Phys. Commun. 2016, 200,364.
|
[1] | 程敏, 王诗慧, 罗磊, 周利, 毕可鑫, 戴一阳, 吉旭. 面向乙烷/乙烯分离的金属有机框架膜的大规模计算筛选[J]. 化学学报, 2022, 80(9): 1277-1288. |
[2] | 王诗慧, 薛小雨, 程敏, 陈少臣, 刘冲, 周利, 毕可鑫, 吉旭. 机器学习与分子模拟协同的CH4/H2分离金属有机框架高通量计算筛选[J]. 化学学报, 2022, 80(5): 614-624. |
[3] | 付浩浩, 陈淏川, 张宏, 邵学广, 蔡文生. 基于几何约束的蛋白质-配体准确结合自由能计算[J]. 化学学报, 2021, 79(4): 472-480. |
[4] | 蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威. 基于机器学习和高通量计算筛选金属有机框架的甲烷/乙烷/丙烷分离性能[J]. 化学学报, 2020, 78(5): 427-436. |
[5] | 刘治鲁, 李炜, 刘昊, 庄旭东, 李松. 金属有机骨架的高通量计算筛选研究进展[J]. 化学学报, 2019, 77(4): 323-339. |
[6] | 卞磊, 李炜, 魏振振, 刘晓威, 李松. 基于高通量计算筛选的金属有机骨架材料甲醛吸附性能[J]. 化学学报, 2018, 76(4): 303-310. |
[7] | 杨文远, 梁红, 乔智威. 高通量筛选金属-有机框架:分离天然气中的硫化氢和二氧化碳[J]. 化学学报, 2018, 76(10): 785-792. |
[8] | 张贺, 李国良, 张可刚, 廖春阳. 金属有机骨架材料在吸附分离研究中的应用进展[J]. 化学学报, 2017, 75(9): 841-859. |
[9] | 刘蓓, 廉源会, 李智, 陈光进. 生物金属-有机骨架材料中药物吸附及扩散的分子模拟研究[J]. 化学学报, 2014, 72(8): 942-948. |
[10] | 刘蓓, 唐李兴, 廉源会, 李智, 孙长宇, 陈光进. 互穿结构及混合配体对金属-有机骨架材料分离性能的影响[J]. 化学学报, 2013, 71(06): 920-928. |
[11] | 吴金梅, 苏高星, 张斌, 闫兵. 组合化学在开发纳米材料以及纳米生物医学研究中的应用进展[J]. 化学学报, 2013, 71(04): 493-500. |
[12] | 陈晓光, 赵晓杰, 王嵩, 王丽萍, 李惟, 孙家钟. Sirt1及Sirt2与活性分子INA的作用机制研究[J]. 化学学报, 2013, 71(02): 199-204. |
[13] | 李悦, 谷雨, 何佳, 何华, 周祎, Chuong Pham-Huy. 光谱法与分子模拟技术研究杨梅素与牛血清白蛋白的相互作用[J]. 化学学报, 2012, 70(02): 143-150. |
[14] | 刘璐莎, 樊君, 胡春梅, 孙洋, 胡晓云, 赵英永, 魏嵩, 梁旭华. 土贝母皂苷II与人血清白蛋白相互作用机制的光谱研究[J]. 化学学报, 2011, 69(21): 2589-2596. |
[15] | 徐飞, 张林群, 何立巍, 谷巍, 房方, 吴启南, 赵波. 泽泻醇类化合物与血清白蛋白相互作用的分子机理研究[J]. 化学学报, 2011, 69(19): 2228-2234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||