化学学报 ›› 2023, Vol. 81 ›› Issue (5): 511-519.DOI: 10.6023/A23020055 上一篇    下一篇

研究论文

基于温度诱导相转变共聚物和导电聚合物的自隔断超级电容器

李西安a,b,*(), 李孝坤b   

  1. a 河南省轨道交通智能安全工程技术研究中心 郑州 450018
    b 郑州铁路职业技术学院 郑州 450052
  • 投稿日期:2023-02-28 发布日期:2023-04-19
  • 基金资助:
    受国家自然科学基金(52175123)

Self-partition Supercapacitor Based on Temperature-induced Phase Transition Copolymer and Conductive Polymer

Xian Lia,b(), Xiaokun Lib   

  1. a Henan Intelligent Safety Engineering Research Center for Rail Transit, Zhengzhou 450018, China
    b Zhengzhou Railway Vocational Technical College, Zhengzhou 450052, China
  • Received:2023-02-28 Published:2023-04-19
  • Contact: *E-mail: 995938202@qq.com
  • Supported by:
    National Natural Science Foundation of China(52175123)

为了提高超级电容器等储能设备的使用安全性, 扩大其实际应用领域, 本工作针对现阶段最常见的储能设备热失控问题, 提出了一种智能高效的超级电容器自我隔断策略. 通过自由基聚合将N-异丙基丙烯酰胺和丙烯酰胺共聚得到热响应聚合物, 将其溶解在氯化锂水溶液中作为电解液, 与导电聚合物电极组合后得到自隔断超级电容器. 得益于热响应电解质的温度诱导相转变特性, 该超级电容器不仅具有高效的充放电特性, 而且在器件发生热失控后能自发地切断离子转移, 阻止器件的进一步恶化, 具有88.1%的自隔断效率; 其次, 共聚物在相转变后会发生皱缩, 对光线具有明显散射并呈现出低透过率的乳白色, 这就使得人们可以通过颜色变化排查发生热失控的故障器件. 因此, 本工作制备的智能且高安全性的超级电容器将进一步为储能设备的普及应用提供新的思路.

关键词: 超级电容器, 自隔断, 热失控, 热响应共聚物, 故障排查

In order to improve the safety of energy storage devices including supercapacitors and expand their practical application, this work proposes an intelligent yet efficient self-partition strategy for the most common problem of thermal runaway at this stage. Firstly, N-isopropylacrylamide (NIPAM) and acrylamide (AM) are copolymerized by free radical polymerization to obtain a thermally responsive copolymer, which is dissolved in lithium chloride aqueous solution as the electrolyte. Self-partition supercapacitors are obtained by combining this as-prepared electrolyte with conductive polymer electrodes. Benefiting from the temperature-induced phase transition characteristics of thermally responsive electrolyte, the supercapacitors not only have efficient charge-discharge characteristics but also automatically cut off the ion transfer after the thermal runaway of the device with a self-partition efficiency of 88.1%, preventing the further deterioration of the device. In addition, the copolymer will shrink after the phase change caused by thermal runaway, which scatters the light and shows milky white with low transmittance, making it possible to troubleshoot the faulty devices with thermal runaway through color change. Therefore, the intelligent and high-safety supercapacitors prepared in this work will further provide a potential reference for the popularization and application of energy storage devices.

Key words: supercapacitor, self-partition, thermal runaway, thermal response copolymer, troubleshooting