化学学报 ›› 2024, Vol. 82 ›› Issue (9): 954-961.DOI: 10.6023/A24060204 上一篇 下一篇
研究论文
何萌萌a,b,†, 张瑞b,c,†, 谢玉龙b,c, 葛从伍b,*(), 高希珂b,*()
投稿日期:
2024-06-27
发布日期:
2024-07-19
作者简介:
基金资助:
Mengmeng Hea,b,†, Rui Zhangb,c,†, Yulong Xieb,c, Congwu Geb,*(), Xike Gaob,*()
Received:
2024-06-27
Published:
2024-07-19
Contact:
*E-mail: About author:
Supported by:
文章分享
与p-型有机场效应晶体管(OFET)相比, 目前n-型OFET仍面临器件性能低及稳定性差等问题. 利用萘二酰亚胺(NDI)核π-扩展策略, 设计合成了邻苯二硫酚取代的萘二酰亚胺-插烯四硫富瓦烯衍生物(BDTNDI-DTYA)2, 通过溶液旋涂成膜法制备了基于(BDTNDI-DTYA)2的底栅顶接触结构的OFET器件. 研究结果表明(BDTNDI-DTYA)2表现出n-型半导体特性, 其薄膜未经处理时器件的平均电子迁移率为0.04 cm2•V-1•s-1, 以热退火(160 ℃)和添加剂(薁)升华两种方式分别对(BDTNDI-DTYA)2的薄膜进行处理后, 薄膜器件的平均电子迁移率分别提升至1.00和0.98 cm2•V-1•s-1.研究表明OFET器件性能的显著提升均得益于薄膜结晶性的提高和形貌的改善. 设计合成了高性能的n-型有机半导体材料(BDTNDI-DTYA)2, 并以薁为调节剂对OFET的活性层结构形貌进行了有效调控, 为有机半导体材料的设计合成及其OFET器件性能的提升提供了新思路.
何萌萌, 张瑞, 谢玉龙, 葛从伍, 高希珂. 核扩展萘二酰亚胺-插烯四硫富瓦烯衍生物的设计合成与性能研究[J]. 化学学报, 2024, 82(9): 954-961.
Mengmeng He, Rui Zhang, Yulong Xie, Congwu Ge, Xike Gao. Design, Synthesis and Property Study of a π-Expanded Naphthalene Diimide-Vinylogous Tetrathiafulvalene Derivative[J]. Acta Chimica Sinica, 2024, 82(9): 954-961.
Compound | Treatment | µe,ave (µe,max)a/(cm2•V-1•s-1) | VT,ave (VT,min)a/V | Ion/Ioffa | |||
---|---|---|---|---|---|---|---|
(BDTNDI-DTYA)2 | Thermal annealing | As-spun | 0.04 (0.05) | 16 (11) | 105~106 | ||
120 ℃ | 0.76 (0.80) | 19 (16) | 105~107 | ||||
160 ℃ | 1.00 (1.42) | 14 (8) | 106~107 | ||||
180 ℃ | 0.72 (1.04) | 13 (8) | 105~106 | ||||
Azulene | 0.98 (1.20) | 19 (13) | 106~107 |
Compound | Treatment | µe,ave (µe,max)a/(cm2•V-1•s-1) | VT,ave (VT,min)a/V | Ion/Ioffa | |||
---|---|---|---|---|---|---|---|
(BDTNDI-DTYA)2 | Thermal annealing | As-spun | 0.04 (0.05) | 16 (11) | 105~106 | ||
120 ℃ | 0.76 (0.80) | 19 (16) | 105~107 | ||||
160 ℃ | 1.00 (1.42) | 14 (8) | 106~107 | ||||
180 ℃ | 0.72 (1.04) | 13 (8) | 105~106 | ||||
Azulene | 0.98 (1.20) | 19 (13) | 106~107 |
[1] |
(a) Wang J.; Ye D.; Meng Q.; Di C.; Zhu D. Adv. Mater. Technol. 2020, 5, 2000218.
|
(b) Shen Z.; Huang W.; Li L.; Li H.; Huang J.; Cheng J.; Fu Y. Small 2023, 19, 2302406.
|
|
(c) Hu Y.; Wang Z.; Huang Y.; Shi R.; Wang S.; Chen X.; Bi J.; Xuan Y.; Lei Y.; Li L.; Yang C.; Hu W. Chin. J. Chem. 2023, 41, 1539.
|
|
(d) Yuan L.; Wang Z.; Meng Y.; Wang S.; Sun Y.; Huang Y.; Li L.; Hu W. Chin. Chem. Lett. 2023, 34, 108569.
|
|
[2] |
(a) Ren X. C.; Yang F. X.; Gao X. S.; Cheng S. T.; Zhang X. T.; Dong H. L.; Hu W. P. Adv. Energy Mater. 2018, 8, 1801003.
|
(b) Zhu Z.; Guo Y.; Liu Y. Mater. Chem. Front. 2020, 4, 2845.
|
|
[3] |
(a) Yin A.; Wang J.; Hu S.; Sun M.; Sun B.; Dong M.; Zhang T.; Feng Z.; Zhang H.; Shi B.; Zhang C.; Liu H. Nano Energy 2023, 106, 108034.
|
(b) Zhao X.; Zhang H.; Zhang J.; Liu J.; Lei M.; Jiang L. Adv. Sci. 2023, 10, 2300483.
|
|
[4] |
(a) Shi J.; Jie J.; Deng W.; Luo G.; Fang X.; Xiao Y.; Zhang Y.; Zhang X.; Zhang X. Adv. Mater. 2022, 34, e2200380
|
(b) Zhang Q.; Jin T. Y.; Ye X.; Geng D. C.; Chen W.; Hu W. P. Adv. Funct. Mater. 2021, 31, 2106151.
|
|
[5] |
(a) Kumar B.; Kaushik B. K.; Negi Y. S. Polym. Rev. 2014, 54, 33.
|
(b) Zhao Z.; Yin Z.; Chen H.; Zheng L.; Zhu C.; Zhang L.; Tan S.; Wang H.; Guo Y.; Tang Q.; Liu Y. Adv. Mater. 2017, 29, 1602410.
|
|
(c) Vasimalla S.; Senanayak S. P.; Sharma M.; Narayan K. S.; Iyer P. K. Chem. Mater. 2014, 26, 4030.
|
|
(d) Han S.; Yu X.; Shi W.; Zhuang X.; Yu J. Org. Electron. 2015, 27, 160.
|
|
(e) Yuan Y.; Giri G.; Ayzner A. L.; Zoombelt A. P.; Mannsfeld S. C.; Chen J.; Nordlund D.; Toney M. F.; Huang J.; Bao Z. Nat. Commun. 2014, 5, 3005.
|
|
[6] |
(a) Insuasty A.; Maniam S.; Langford S. J. Chem. Eur. J. 2019, 25, 7058.
|
(b) Luo H.; Cai Z.; Tan L.; Guo Y.; Yang G.; Liu Z.; Zhang G.; Zhang D.; Xu W.; Liu Y. J. Mater. Chem. C 2013, 1, 2688.
|
|
(c) Chen J.; Zhuang X.; Huang W.; Su M.; Feng L.; Swick S. M.; Wang G.; Chen Y.; Yu J.; Guo X.; Marks T. J.; Facchetti A. Chem. Mater. 2020, 32, 5317.
|
|
(d) Li S. W.; Zhu C. Y. J.; Luo Y. H.; Zhang Y. R.; Teng H. M.; Wang Z. R.; Zhen Y. G. Acta Chim. Sinica 2022, 80, 1600 (in Chinese).
|
|
(李善武, 朱陈宇杰, 罗尹豪, 张亚茹, 滕汉明, 王宗瑞, 甄永刚, 化学学报, 2022, 80, 1600.)
doi: 10.6023/A22080380 |
|
[7] |
(a) Hu Y.; Wang Z.; Zhang X.; Yang X.; Ge C.; Fu L.; Gao X. Org. Lett. 2017, 19, 468.
|
(b) Wu W.; Li J.; Zhao Z.; Yang X.; Gao X. Org. Chem. Front. 2017, 4, 823.
|
|
[8] |
(a) Choudhury A.; Gupta R. K.; Garai R.; Iyer P. K. ACS Appl. Electron. 2021, 3, 5393.
|
(b) Doumon N. Y.; Wang G.; Qiu X.; Minnaard A. J.; Chiechi R. C.; Koster L. J. A. Sci. Rep. 2019, 9, 4350.
|
|
(c) Ichikawa M.; Yamamura K.; Jeon H. G.; Nakajima M.; Taniguchi Y. J. Appl. Phys. 2011, 109, 054504.
|
|
(d) Lee Y.; Ho D.; Valentini F.; Earmme T.; Marrocchi A.; Vaccaro L.; Kim C. J. Mater. Chem. C 2021, 9, 16506.
|
|
[9] |
(a) Zhong L.; Kang S. H.; Oh J.; Jung S.; Cho Y.; Park G.; Lee S.; Yoon S. J.; Park H.; Yang C. Adv. Funct. Mater. 2022, 32, 2201080.
|
(b) Bao S.; Yang H.; Fan H.; Zhang J.; Wei Z.; Cui C.; Li Y. Adv. Mater. 2021, 33, 2105301.
|
|
(c) Yu R.; Yao H.; Hong L.; Qin Y.; Zhu J.; Cui Y.; Li S.; Hou J. Nat. Commun. 2018, 9, 4645.
|
|
(d) Zhang G.; Hu D.; Tang H.; Song H.; Duan S.; Kan Z.; Lu S. Sol. RRL 2023, 7, 2200994.
|
|
(e) Song X.; Zhang K.; Guo R.; Sun K.; Zhou Z.; Huang S.; Huber L.; Reus M.; Zhou J.; Schwartzkopf M.; Roth S. V.; Liu W.; Liu Y.; Zhu W.; Müller-Buschbaum P. Adv. Mater. 2022, 34, 2200907.
|
|
(f) Xiao M.; Meng Y.; Tang L.; Li P.; Tang L.; Zhang W.; Hu B.; Yi F.; Jia T.; Cao J.; Xu C.; Lu G.; Hao X.; Ma W.; Fan Q. Adv. Funct. Mater. 2024, 34, 2311216.
|
|
[10] |
(a) He Z.; Zhang Z.; Bi S. J. Mater. Sci: Mater. Electron. 2019, 30, 20899.
|
(b) Scaccabarozzi A. D.; Basu A.; Aniés F.; Liu J.; Zapata-Arteaga O.; Warren R.; Firdaus Y.; Nugraha M. I.; Lin Y.; Campoy-Quiles M.; Koch N.; Müller C.; Tsetseris L.; Heeney M.; Anthopoulos T. D. Chem. Rev. 2022, 122, 4420.
|
|
(c) Jiang X.; Tu K.; Duan T. N.; Xiao Z. Y. Acta Chim. Sinica 2024, 82, 551 (in Chinese).
|
|
(江雪, 涂开槐, 段泰男, 肖泽云, 化学学报, 2024, 82, 551.) .
|
|
(c) Yuan L. Q.; Huang Y. N.; Chen X. S.; Gao Y. X.; Ma X. N.; Wang Z. W.; Hu Y. X.; He J. B.; Han C.; Li J.; Li Z. Y.; Weng X. F.; Huang R.; Cui Y.; Li L. Q.; Hu W. P. Nat. Mater. DOI:10.1038/s41563-024-01933-w.
|
|
[11] |
(a) Anderson A. G.; Steckler B. M. J. Am. Chem. Soc. 1959, 81, 4941.
|
(b) Lemal D. M.; Goldman G. D. J. Chem. Educ. 1988, 65, 923.
|
|
(c) Robertson J. M.; Shearer H. M. M.; Sim G. A.; Watson D. G. Acta Cryst. 1962, 15, 1.
|
|
(d) Hou B.; Li J.; Xin H. S.; Yang X. D.; Gao H. L.; Peng P. Z.; Gao X. K. Acta Chim. Sinica 2020, 78, 788 (in Chinese).
doi: 10.6023/A20050161 |
|
(侯斌, 李晶, 辛涵申, 杨笑迪, 高洪磊, 彭培珍, 高希珂, 化学学报, 2020, 78, 788.) .
doi: 10.6023/A20050161 |
|
(e) Wang Y.; Xiang J. J.; Ge C. W.; Gao X. K. Acta Chim. Sinica 2023, 81, 1341 (in Chinese).
|
|
(汪洋, 向焌钧, 葛从伍, 高希珂, 化学学报, 2023, 81, 1341.)
doi: 10.6023/A23060292 |
|
[12] |
(a) Zhou M.; Li J.; Cheng J.; Ge C. W.; Cheng T. Y.; Gao X. K. Chin. J. Org. Chem. 2021, 41, 4400 (in Chinese).
|
(周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.) .
doi: 10.6023/cjoc202105023 |
|
(b) Gao X. K.; Di C. A.; Hu Y. B.; Yang X. D.; Fan H. Y.; Zhang F. J; Liu Y. Q.; Li H. Q.; Zhu D. B. J. Am. Chem. Soc. 2010, 132, 3697.
|
|
(c) Leng B.; Lu D.; Jia X.; Yang X.; Gao X. K. Org. Chem. Front. 2015, 2, 372.
|
|
[13] |
Azumi R.; Götz G.; Bäuerle P. Synth. Met. 1999, 101, 569.
|
[14] |
Frisch M. J. T., G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery Jr J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. Gaussian 16, Wallingford CT, 2016.
|
[15] |
Hu Y.; Gao X.; Di C.; Yang X.; Zhang F.; Liu Y.; Li H.; Zhu D. Chem. Mater. 2011, 23, 1204.
|
[16] |
Shukla J.; Ajayakumar M. R.; Mukhopadhyay P. Org. Lett. 2018, 20, 7864.
doi: 10.1021/acs.orglett.8b03408 pmid: 30499673 |
[17] |
(a) Jelley E. E. Nature 1936, 138, 1009.
|
(b) Bouchard J.; Belletête M.; Durocher G.; Leclerc M. Macromolecules 2003, 36, 4624.
|
|
(c) Guo X.; Ortiz R. P.; Zheng Y.; Kim M. G.; Zhang S.; Hu Y.; Lu G.; Facchetti A.; Marks T. J. J. Am. Chem. Soc. 2011, 133, 13685.
|
|
(d) Kang S. H.; Lee D.; Kim H.; Choi W.; Oh J.; Oh J. H.; Yang C. ACS Appl. Mater. Interfaces 2021, 13, 52840.
|
|
[18] |
Brown A. R.; Jarrett C. P.; de Leeuw D. M.; Matters M. Synth. Met. 1997, 88, 37.
|
[19] |
(a) Zaumseil J.; Sirringhaus H. Chem. Rev. 2007, 107, 1296.
pmid: 17378616 |
(b) Higashino T.; Mori T. Phys. Chem. Chem. Phys. 2022, 24, 9770.
pmid: 17378616 |
|
[20] |
(a) Zhong L.; Jeong S.; Lee S.; Mai T. L. H.; Park J.; Park J.; Kim W.; Yang C. Chem. Commun. 2023, 59, 12108.
|
(b) Wang J. F; Li Z. Acta Chim. Sinica 2021, 79, 575 (in Chinese).
|
|
(王金凤, 李振. 化学学报, 2021, 79, 575.)
doi: 10.6023/A21010029 |
|
[21] |
(a) Mas-Torrent M.; Rovira C. Chem. Rev. 2011, 111, 4833.
doi: 10.1021/cr100142w pmid: 21417271 |
(b) Zhou Q.; Yang J.; Du M.; Yu X.; Li C.; Zhang X.-S.; Peng Q.; Zhang G.; Zhang D. J. Mater. Chem. C 2022, 10, 2814.
pmid: 21417271 |
|
(c) Chen X.; Guo Y.; Tan L.; Yang G.; Li Y.; Zhang G.; Liu Z.; Xu W.; Zhang D. J. Mater. Chem. C 2013, 1, 1087
pmid: 21417271 |
|
[22] |
Wang Y.; Sun S.; Huang Y.; Fu Y.; Qi J.; Tie K.; Wang Z.; Jiao F.; Si R.; Chen X.; Li L.; Hu W. Aggregate 2023, 4, e379
|
[23] |
(a) Scholes D. T.; Yee P. Y.; Lindemuth J. R.; Kang H.; Onorato J.; Ghosh R.; Luscombe C. K.; Spano F. C.; Tolbert S. H.; Schwartz B. J. Adv. Funct. Mater. 2017, 27, 1702654.
|
(b) Jeong J. W.; Jo G.; Choi S.; Kim Y. A.; Yoon H.; Ryu S.-W.; Jung J.; Chang M. ACS Appl. Mater. Interfaces 2018, 10, 18131.
|
|
(c) Guo C.; Zhang Q.; Li H.; Lu J. Chem. Asian J. 2020, 15, 2493.
|
|
[24] |
Nozoe T.; Seto S.; Matsumura S.; Murase Y. Bull. Chem. Soc. Jan. 1962, 35, 1179.
|
[1] | 江雪, 涂开槐, 段泰男, 肖泽云. 添加剂在有机太阳能电池中的应用[J]. 化学学报, 2024, 82(5): 551-564. |
[2] | 程敏, 王诗慧, 罗磊, 周利, 毕可鑫, 戴一阳, 吉旭. 面向乙烷/乙烯分离的金属有机框架膜的大规模计算筛选[J]. 化学学报, 2022, 80(9): 1277-1288. |
[3] | 武文俊, 信成浩, 逄智涵, 徐梁, 李晨. N,N-二甲基碘化铵:染料敏化太阳能电池钙钛矿前驱体电解质的#br# 高效添加剂[J]. 化学学报, 2019, 77(6): 545-550. |
[4] | 邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 259-277. |
[5] | 孙才力, 滕坤旭, 牛丽亚, 陈玉哲, 杨清正. 萘二酰亚胺[3]轮烷的设计合成及发光性能研究[J]. 化学学报, 2018, 76(10): 779-784. |
[6] | 冷明浩, 陈仕谋, 张军玲, 郎海燕, 康艳红, 张锁江. 含羰基有机添加剂对AlCl3-[Emim]Cl电沉积铝的影响[J]. 化学学报, 2015, 73(5): 403-408. |
[7] | 金朝庆, 谢凯, 洪晓斌. 锂硫电池电解质研究进展[J]. 化学学报, 2014, 72(1): 11-20. |
[8] | 张治安, 彭波, 卢海, 任春燕, 贾明, 赖延清. 苯甲醚及其溴取代物用作锂离子电池防过充添加剂的研究[J]. 化学学报, 2013, 71(05): 798-802. |
[9] | 刁岩, 谢凯, 洪晓斌, 熊仕昭. Li-S电池硫正极性能衰减机理分析及研究现状概述[J]. 化学学报, 2013, 71(04): 508-518. |
[10] | 伍玉琴, 李谋成, 辛森森, 胡方坚, 沈嘉年. 三种添加剂对纳米晶锌镀层电沉积行为及结构的影响[J]. 化学学报, 2010, 68(06): 531-534. |
[11] | 曹小敏, 王志勇, 刘欲文, 汪存信, 田耘. 等转化率法分析溶菌酶在添加剂影响下的热变性行为[J]. 化学学报, 2010, 68(02): 194-198. |
[12] | 曾彪, 刘素琴, 黄可龙, 王海燕, 黄建函, 刘建生. 功能添加剂对锂离子电池的防过充电化学行为研究[J]. 化学学报, 2009, 67(24): 2815-2821. |
[13] | 姚万浩, 李劼, 张忠如, 高军, 王周成, 杨勇. 锂离子电池电解液成膜添加剂乙烯基亚硫酸乙烯酯的电化学行为[J]. 化学学报, 2009, 67(22): 2531-2535. |
[14] | 刘思思, 杨军, 王飞, 努丽燕娜, 王久林. 金属锂在含(亚)硫酰基添加剂电解液中电化学可逆性研究[J]. 化学学报, 2009, 67(21): 2395-2401. |
[15] | 张千玉,张宇婷,秋沉沉,付延鲍,马晓华. 4-溴苯甲醚用作锂离子电池过充保护添加剂的研究[J]. 化学学报, 2009, 67(15): 1713-1717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||