化学学报 ›› 2025, Vol. 83 ›› Issue (5): 527-534.DOI: 10.6023/A25030061 上一篇    下一篇

研究论文

酸碱度对纸张降解趋势的影响及脱酸理论碱用量研究——以20世纪90年代机制纸为例

夏文卓a, 刘恒b, 王思浓b,*(), 唐颐a,*()   

  1. a 复旦大学化学系 上海市分子催化与创新材料重点实验室 先进材料实验室 多孔材料分离与转化国家重点实验室 上海 200433
    b 复旦大学图书馆 中华古籍保护研究院 上海 200433
  • 投稿日期:2025-03-03 发布日期:2025-04-21
  • 基金资助:
    国家重点研发计划(2022YFF0904200)

The Influence of pH on Paper Degradation Trends and Calculation of Alkali Dosage in Deacidification: Taking the Machine-Made Paper of the 1990s as an Example

Wenzhuo Xiaa, Heng Liub, Sinong Wangb,*(), Yi Tanga,*()   

  1. a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Porous Materials for Separation and Conversion, Fudan University, Shanghai 200433, China
    b Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
  • Received:2025-03-03 Published:2025-04-21
  • Contact: * E-mail: wangsn@fudan.edu.cn; yitang@fudan.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFF0904200)

纸张和纸质文物在长时间的使用或保存后会逐渐酸化降解直至损毁失去价值, 根据纸张酸化程度及其降解趋势评估纸张的状态有助于实现对纸张的针对性脱酸保护. 考虑到纸张本体酸碱度(pH值)是影响纸张降解的一个重要因素, 本工作以20世纪90年代的机制纸为研究对象, 研究了不同初始pH值的纸张在人工干热加速老化条件下的酸化趋势和降解速率常数, 并表征分析了包括pH值变化、氧化度和色差等纸张综合性能的变化. 90 d周期的加速干热老化结果显示, 所研究的机制纸的降解遵循一级动力学, 并在碱性状态下呈现出较低的降解速率常数; 同时酸性机制纸的pH值下降较快, 氧化度明显升高, 表现出发暗黄化, 而碱性机制纸能保持碱性至近中性的状态, 拥有更低的氧化度和更小的色差. 此外不论是强碱还是强酸处理, 极端的酸碱性环境均会导致纸张纤维素数均聚合度的下降. 该机制纸的合适pH值范围为7~8.5. 在此基础上, 本研究提出脱酸理论碱用量的计算方法, 参考纸张酸化降解趋势下的合理pH值范围, 将碱用量拆解为脱酸处理量和额外碱保留量进行分析并给出计算公式. 本研究方法可推广至其他类型纸张的降解趋势分析, 理论碱用量的计算可为实际脱酸中的碱量控制提供科学指导, 避免脱酸过程中碱过量造成的纸张碱性降解等二次损伤.

关键词: 机制纸, 酸碱度, 酸化降解速率常数, 脱酸适宜pH值, 脱酸理论碱用量

Paper and paper-based cultural artifacts gradually undergo acid hydrolysis degradation during prolonged use or storage, ultimately leading to structural failure and loss of value. Assessing the condition of paper based on its acidification level and degradation trends facilitates targeted deacidification conservation strategies. Given that the inherent pH of paper is a critical factor influencing its degradation, this study focuses on 1990s machine-made paper as the research subject, employing gel permeation chromatography (GPC) to investigate the acidification tendencies and degradation rate constants of papers with varying initial pH values under artificial dry-heat accelerated aging conditions. Non-destructive characterization methods were further employed to analyze changes in comprehensive paper properties, including pH, oxidation degree, and color difference. Results from the 90 d accelerated dry-heat aging experiment revealed that the degradation of the studied machine-made paper follows first-order degradation kinetics. Alkaline paper exhibited smaller degradation rate constants and slower degradation rates. Acidic machine-made paper demonstrated rapid pH decline, significant oxidation and visible darkening/yellowing, while alkaline machine-made paper maintained an alkaline to nearly neutral state, with a lower oxidation degree and a smaller color difference. However, regardless of whether it is subjected to strong alkaline or strong acidic treatment, extreme acidic or alkaline environments will lead to a decline in the degree of polymerization of cellulose in the paper. The optimal pH range for this machine-made paper was identified as 7~8.5. Building on these findings, a theoretical calculation method for alkali dosage in deacidification is proposed. By considering the appropriate pH range under acidifica- tion degradation trends, the alkali dosage is decomposed into acid neutralization amount and alkali retention amount for analysis, with calculation formulas provided for different deacidification targets. This research can be extended to degradation trend analyses of other paper types, while the alkali dosage calculation provides a reference for practical deacidification processes to avoid secondary damage caused by excessive alkalinity.

Key words: machine-made paper, pH, acidizing degradation rate constant, suitable pH value for deacidification, calculation of alkali dosage in deacidification