研究论文

MMP-12 蛋白包涵体复性时折叠状态核磁共振图谱与荧光光谱研究

  • 张琳琳 ,
  • 冯延叶 ,
  • 蓝文贤 ,
  • 曹春阳 ,
  • 徐殿胜 ,
  • 杨忠
展开
  • a 华东理工大学生物反应器工程国家重点实验室 上海 200237;
    b 复旦大学生命科学学院微生物学和微生物工程系 上海 200433;
    c 中国科学院上海有机化学研究所生命有机国家重点实验室 上海 200032

收稿日期: 2011-09-16

  修回日期: 2011-10-18

  网络出版日期: 2012-03-07

基金资助

国家重点基础研究发展计划(973 计划) (No. 2009CB918600)资助项目.

Investigation on MMP-12 Aggregation State in Urea Contained Solution by NMR and Fluorescence Spectroscopy

  • Zhang Linlin ,
  • Feng Yanye ,
  • Lan Wenxian ,
  • Cao Chunyang ,
  • Xu Diansheng ,
  • Yang Zhong
Expand
  • a State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China;
    b Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
    c State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2011-09-16

  Revised date: 2011-10-18

  Online published: 2012-03-07

Supported by

National Key Basic Research Program of China (No. 2009CB918600).

摘要

MMP-12 是癌症治疗药物靶标. 为了更好研制新药, 需要大量制备MMP-12, 但MMP-12 在大肠杆菌中以包涵体形式表达. 因此如何优化蛋白复性过程是大量获取MMP-12 蛋白的关键. 采用核磁共振、稳态荧光法、外源性ANS (8-anilinol-naphthalenesulfonic acid)荧光探针三种方法监控MMP-12 变性蛋白的再折叠过程, 以探究其复性折叠机制. 研究发现MMP-12 再折叠中点值与对应的尿素浓度几乎相等(Cm≈4, mid-point of transition). 不同尿素浓度中MMP-12 的二维1H-15N HSQC (heteronuclear single quantum correlation)谱图显示, 尿素浓度从4 mol/L 降低到3 mol/L 是MMP-12 蛋白复性折叠的关键步骤. 据此我们将MMP-12 蛋白复性从常规的梯度透析复性方法改进成等容透析复性法(即确保尿素从4 mol/L 到3 mol/L 的浓度变化缓慢), 实现复性收率提高一倍.

本文引用格式

张琳琳 , 冯延叶 , 蓝文贤 , 曹春阳 , 徐殿胜 , 杨忠 . MMP-12 蛋白包涵体复性时折叠状态核磁共振图谱与荧光光谱研究[J]. 化学学报, 2012 , 70(04) : 453 -458 . DOI: 10.6023/A1109161

Abstract

MMP-12 is a drug target for cancer therapy, but it’s over-expressed as inclusion bodies in E. coli To produce it in a large scale, in this paper, NMR, intrinsic tryptophan fluorescence, and ANS (8-anilinol-naphthalenesul fonic acid) fluorescence were employed to monitor its aggregation state to improve the refolding yield from inclusion bodies. The midpoint for the refolding (Cm≈4, mid-point of transition) of MMP-12 obtained from NMR experiments coincides with those from intrinsic tryptophan fluorescence and ANS fluorescence. These data suggest that the urea concentration from 4 mol/L to 3 mol/L is a key step in refolding process of MMP-12. Based on these results, we changed the refolding method from conventional step-wise dialysis to continuous dialysis, thus the refolding yield of MMP-12 from its inclusion bodies was doubled.

参考文献

1 Birkedal-Hansen, H.; Moore, W. G. I.; Bodden, M. K.; Windsor, L. J.; Birkedal-Hansen, B.; DeCarlo, A.; Engler, J. A. Crit. Rev. Oral Biol. Med. 1993, 4(2), 197.  

2 Matrisian, L. M. Trends Genet. 1990, 6, 121.  

3 Hughes, C.; Murphy, G.; Hardingham, T. E. Biochem. J. 1991, 279(Pt 3), 733.

4 Sato, H.; Kita, M.; Seiki, M. J. Biol. Chem. 1993, 268(31), 23460.

5 Van Wart, H. E.; Birkedal-Hansen, H. Proc. Natl. Acad. Sci. U. S. A. 1990, 87(14), 5578.

6 Murphy, G.; Docherty, A. J. Am. J. Respir. Cell. Mol. Biol. 1992, 7(2), 120.

7 Ohnishi, K.; Takagi, M.; Kurokawa, Y.; Satomi, S.; Konttinen, Y. T. Lab. Invest. 1998, 78(9), 1077.

8 Kurahara, S.; Shinohara, M.; Ikebe, T.; Nakamura, S.; Beppu, M.; Hiraki, A.; Takeuchi, H.; Shirasuna, K. Head Neck 1999, 21(7), 627.

9 Finlay, G. A.; O'Driscoll, L. R.; Russell, K. J. et al. Am. J. Respir. Crit. Care Med. 1997, 156(1), 240.  

10 Rawlings, N. D.; Tolle, D. P.; Barrett, A. J. Nucleic Acids Res. 2004, 32(Database issue), D160.  

11 Shapiro, S. D.; Kobayashi, D. K.; Ley, T. J. J. Biol. Chem. 1993, 268(32), 23824.

12 Belaaouaj, A.; Shipley, J. M.; Kobayashi, D. K.; Zimonjic, D. B.; Popescu, N.; Silverman, G. A.; Shapiro, S. D. J. Biol. Chem. 1995, 270(24), 14568.

13 Mecham, R. P.; Broekelmann, T. J.; Fliszar, C. J.; Shapiro, S. D.; Welgus, H. G.; Senior, R. M. J. Biol. Chem. 1997, 272(29), 18071.  

14 Zheng, X.; Ou, L.; Tong, X. et al. Protein Expr. Purif. 2007, 56(2), 160.  

15 Yang, Z.; Zhang, L.; Zhang, Y. et al. PLoS One 2011, 6(7), e22981.

16 Uversky, V. N.; Winter, S.; Lober, G. Biophys. Chem. 1996, 60(3), 79.  

17 Arai, M.; Kuwajima, K. Fold Des. 1996, 1(4), 275.

18 Tsumoto, K.; Arakawa, T.; Chen, L. Curr. Pharm. Biotechnol. 2010, 11(3), 285.  

19 Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545-600.  

20 Garcia, P.; Serrano, L.; Rico, M.; Bruix, M. Structure 2002, 10(9), 1173.

21 Bom, A. P.; Freitas, M. S.; Moreira, F. S.; Ferraz, D.; Sanches, D.; Gomes, A. M. J. Biol. Chem. 2010, 285(4), 2857.

22 Egan, D. A.; Logan, T. M.; Liang, H.; Matayoshi, E.; Fesik, S. W.; Holzman, T. F. Biochemistry 1993, 32(8), 1920.
文章导航

/