研究论文

紫外光固化含硼氮六环的硅硼氮碳烷陶瓷单源先驱体的合成、表征及性能研究

  • 张建柯 ,
  • 陈立新 ,
  • 张红祥 ,
  • 何玮奇
展开
  • 西北工业大学理学院应用化学系 西安 710129

收稿日期: 2011-09-25

  修回日期: 2011-12-06

  网络出版日期: 2011-12-22

基金资助

西北工业大学研究生创业种子基金资助项目(No. Z2011014).

Synthesis, Characterization and Performance Study of Borosilazane as UV-Curable Borazine-Type Single Source Precursors for SiBNC Ceramic

  • Zhang Jianke ,
  • Chen Lixin ,
  • Zhang Hongxiang ,
  • He Weiqi
Expand
  • Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710129

Received date: 2011-09-25

  Revised date: 2011-12-06

  Online published: 2011-12-22

Supported by

Supported by Graduate Starting Seed Fund of Northwestern Polytechnical University (No. Z2011014).

摘要

以氯甲基三氯硅烷、三氯化硼和六甲基二硅氮烷为原料经过一步法合成出一种新型的端基为Si-Cl 基团的含硼氮六环的硼硅氮碳烷单体: B,B',B"-三[(三氯硅基)-亚甲基]环硼氮烷(TSMB), 用2-羟基丙烯酸乙酯和乙烯基乙二醇醚对TSMB 进行功能化改性, 得到可UV 固化的陶瓷单源先驱体a-TSMB 和e-TSMB; a-TSMB 和e-TSMB 经UV 固化、1400℃下裂解2 h 最后制备出陶瓷材料C1 和C2. 采用红外光谱(FT-IR)、核磁共振波谱(NMR)、等温差示光量热分析(DPC)、实时红外光谱(RT-IR)、热失重分析(TGA)、X 射线光电子能谱(XPS)和X 射线衍射法(XRD)分别对TSMB, e-TSMB 和a-TSMB 以及陶瓷C1 和C2 的结构、组成、UV 反应性、陶瓷产率和耐高温性能进行了研究. 结果表明: a-TSMB 和e-TSMB 两种陶瓷单源先驱体分子中含有硼氮六环结构, 分子末端为丙烯酸酯或乙烯基醚官能团, 与理论设计完全相符; a-TSMB 和e-TSMB 的光聚合反应在25 s 内分别完成82%和67%, 最终双键转化率可达到90.0%和74.0%, 其陶瓷产率在1300 ℃时为57.9%和48.5%; 陶瓷材料C1 和C2 中含有Si, B, C, N, O 五种元素, 且B 元素的含量达到4.4%和4.9%, 达到耐高温陶瓷对B 元素含量的要求, 在1400 ℃时陶瓷C1 和C2 均可保持非晶态具有优异的耐高温性能.

本文引用格式

张建柯 , 陈立新 , 张红祥 , 何玮奇 . 紫外光固化含硼氮六环的硅硼氮碳烷陶瓷单源先驱体的合成、表征及性能研究[J]. 化学学报, 2012 , 70(08) : 1035 -1042 . DOI: 10.6023/A1109254

Abstract

A novel borosilazane monomer terminated with Si-Cl groups: B,B',B"-tris[(trichlorosilyl)- methyl] borazine (TSMB) was synthesized through one-step route by reacting boron trichloride (BCl3), chloromethyl trichlorosilane (CH2ClSiCl3) with hexamethyldisilazane (HMDZ) as the starting materials. From functionalizing TSMB by 2-hydroxethyl acrylate and 2-hydroxyethyl vinyl ether, two UV-curable single source precursors a-TSMB and e-TSMB were obtained, respectively. Then ceramic materials C1 and C2 can be prepared with a-TSMB and e-TSMB through UV-curing and cracking under 1400 ℃ for 2 h. The chemical composition, structure, photo-curing performance and ceramic yield of the TSMB, a-TSMB and e-TSMB were investigated using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), differential photocalorimetry (DPC), real time infrared spectroscopy (RT-IR) and thermo gravimetric analyzer (TGA). The content and high temperature performance of the ceramic C1 and C2 were studied by element analysis, X-ray photoelectron spectroscopy analysis (XPS) and X-ray diffraction (XRD). Results show that both the two ceramic precursors molecules, a-TSMB and e-TSMB, contain the B-N six-member ring structure, and are terminated with acrylate or vinyl ether functional groups, which matches well with the theoretical design. The photo polymerization of the a-TSMB and e-TSMB can finish 82% and 67% in 25 s, the final conversion of the double bond can reach 90.0% and 74.0%, and the corresponding ceramic yield at 1300 ℃ is 57.9% and 48.5%, respectively. There are five elements, Si, B, C, N, and O in the C1 and C2 ceramic materials, and the contents of B are 4.4% and 4.9%, respectively, which can achieve the requirement for the high temperature ceramic material on the B element. Both the ceramic materials C1 and C2 can preserve amorphous states at 1400 ℃ and have excellent high-temperature resistance properties.

参考文献

1 Riedel, R.; Mera, G.; Colombow, P. J. Am. Ceram. Soc.2010, 93, 1805.

2 Riedel, R.; Kienzle, A.; Dressler, W.; Ruwisch, L.; Bill, J. Nature 1996, 382, 796.  

3 Kunz, K. P.; Sarin, V. K.; Davis, R. F.; Bryan, R. F. Mater. Sci. Eng. A 1988, 105, 47.  

4 Wang, D.-H.; Jiang, L. The UV Curable Materials, Science Press, Beijing, 2001, pp. 3~7 (in Chinese). (王德海, 江棂, 紫外光固化材料, 科学出版社, 北京,2001, pp. 3~7.)

5 Reddy, S. K.; Cramer, N. B.; Cross, T.; Raj, R.; Bowman, C. N. Chem. Mater. 2003, 15, 4257.  

6 Cramer, N. B.; Reddy, S. K.; Lu, H.; Cross, T.; Raj, R.; Bowman, C. N. J. Polym. Sci. Part A: Polym. Chem. 2004,42, 1752.  

7 Li, Y.-H.; Li, X.-D.; Kim, D. P. J. Organomet. Chem. 2007,692, 5303.  

8 Li, Y.-H.; Li, X.-D.; Kim, D. P. J. Electroceram. 2009, 23,133.  

9 Zhang, G.-B.; Kong, J.; Fan, X.-D.; Li, X.-G.; Tian, W.; Huang, M.-R. Appl. Organomet. Chem. 2009, 23, 277.  

10 Zhang, G.-B.; Fan, X.-D.; Kong, J.; Liu, Y.-Y.; Wang, M.-C.; Qi, Z.-C. Macromol. Chem. Phys. 2007, 208, 541.  

11 Haberecht, J.; Krumeich, F.; Grützmacher, H.; Nesper, R. Chem. Mater. 2004, 16, 418.  

12 Gervais, C.; Maquet, J.; Babonneau, F.; Duriez, C.; Framery, E.; Vaultier, M.; Florian, P.; Massiot, D. Chem. Mater. 2001,13, 1700.  

13 Toury, B.; Miele, P. J. Mater. Chem. 2004, 14, 2609.  

14 Miele, P.; Toury, B.; Cornu, D.; Bernar, S. J. Org. Chem.2005, 690, 2809.  

15 Noth, H.; Vahrenkamp, H. Chem. Ber. 1966, 99, 1049.  

16 Jäschke, T.; Jansen, M. C. R. Chimie 2004, 7, 471.  

17 Jäschke, T.; Jansen, M. Z. Anorg. Allg. Chem. 2004, 630,239.  

18 Jäschke, T.; Jansen, M. J. Eur. Ceram. Soc. 2005, 25, 211.  

19 Jäschke, T.; Jansen, M. J. Mater. Chem. 2006, 16, 2792.  

20 Gerardin, C.; Henry, M.; Taulelle, F. Mater. Res. Soc. Symp. Proc. 1992, 271, 777.  

21 Nie, J.; Linden, L. A.; Rabek, J. F. Angew. Makromol. Chem.1998, 257, 47.  

22 Decher, C. Prog. Polym. Sci. 1996, 21, 593.  

23 Decker, C. J. Macromol. Sci., Pure Appl. Chem. 1997, 34,605.  

24 Seyferth, D.; Köjler, H. P. J. Inorg. Nucl. Chem. 1960, 15,99.  

25 Wideman, T.; Cortez, E.; Remsen, E. E.; Zank, G. A.; Carroll, P. J.; Sneddon, L. G. Chem. Mater. 1997, 9, 2218.  

26 Trassel, S.; Motz, G.; Rossler, E. J. Non-Cryst. Solids 2001,293/295, 261.  
文章导航

/