研究论文

系列离子液体型Gemini咪唑表面活性剂在水溶液中的分子动力学模拟

  • 刘国宇 ,
  • 顾大明 ,
  • 刘海燕 ,
  • 丁伟 ,
  • 于涛 ,
  • 程杰成
展开
  • a. 哈尔滨工业大学理学院化学系, 哈尔滨 150001;
    b. 东北石油大学化学化工学院, 大庆 163318;
    c. 大庆油田有限责任公司科技发展部, 大庆 163453

收稿日期: 2011-05-25

  修回日期: 2011-08-16

  网络出版日期: 2012-02-25

基金资助

国家重点基础研究发展规划项目(973)(No.2005CB221300)和黑龙江省研究生创新科研项目(No.YJSCX2008-044HLJ)资助项目.

Molecular Dynamics Simulation of Ionic Liquid-type Gemini Imidazolium Surfactants in Aqueous Solutions

  • LIU Guo-Yu ,
  • GU Da-Ming ,
  • LIU Hai-Yan ,
  • DING Wei ,
  • YU Tao ,
  • CHENG Jie-Cheng
Expand
  • a. Department of Chemistry, School of Sciences, Harbin Institute of Technology, Harbin 150001;
    b. Chemistry and Chemical Engineering College, Northeast Petroleum University, Daqing 163318;
    c. Development Department of Science and Technology, Daqing Oil Field Corp. Ltd., Daqing 163453

Received date: 2011-05-25

  Revised date: 2011-08-16

  Online published: 2012-02-25

Supported by

National Key Basic Research Program of China(973)(No.2005CB221300)and Postgraduate Innovative Science Research Program of Heilongjiang Province,China(No.YJSCX2008-044HLJ).

摘要

利用分子动力学模拟方法研究了系列离子液体型Gemini咪唑表面活性剂在水溶液中的表面活性和胶束化能力. 模拟结果表明,压力张量法得到的表面张力模拟值偏小,需乘以修正系数矫正;分子动力学模拟得到的临界胶束浓度变化规律与实验相符,可以定性比较不同结构的离子液体型Gemini咪唑分子间的胶束化能力;温度的升高会加剧分子的热运动,不利于离子液体型Gemini咪唑表面活性剂在水溶液中形成胶束;此外,研究还发现联接基不同的离子液体型Gemini咪唑表面活性剂可能遵循不同的胶束化机理.S≤6时,单个分子自组装成胶球后发生聚合形成大胶团.随着咪唑上长烷烃链碳数的增加,[Cn-4-Cnim]胶束化能力提高;而随着联接链长度增加,[C10-S-C10im]胶束化能力降低;当S >6时,分子联接基弯曲并伸入其它分子烷烃链内部以减小头基分离力,从而形成稳定的胶束或胶团.随着联接基团亚甲基数的增加,头基斥力减小,附加疏水相互作用增强,[C10-S-C10im]胶束化能力提高.

本文引用格式

刘国宇 , 顾大明 , 刘海燕 , 丁伟 , 于涛 , 程杰成 . 系列离子液体型Gemini咪唑表面活性剂在水溶液中的分子动力学模拟[J]. 化学学报, 2012 , 70(01) : 6 -14 . DOI: 10.6023/A1105252

Abstract

The surface activity and the ability of micellization of ionic liquid-type Gemini imidazolium surfactants in aqueous solution were investigated by the molecular dynamics simulation.The simulation re- sults indicate that the surface tension calculated from pressure tensor is lower and need to be corrected by multiplying the modified coefficient.The critical micelle concentration calculated by molecular dynamics simulation is consistent with experimental values,and can be used to discriminate the capacity of micelliza- tion of ionic liquid-type Gemini imidazolium surfactants.As the temperature rises,the micellization of ionic liquid-type Gemini imidazolium surfactants becomes more difficult with the aggravation of molecular movement.In addition,we found that ionic liquid-type Gemini imidazolium surfactants with different spacer lengths should follow the various mechanism of micellization.At S≤6,the self-assembly ball of single molecule begin to form the larger micelle.As the carbon atoms of the alkyl chains on the imidazole increase, the formation ability of the micelles of[Cn-4-Cnim]is enhanced.But the formation ability of the micelles of [C10-S-C10im] decrease with the longer spacer.However,at S>6,one molecule inserts the crooked spacer into the interspace between the alkyl chains of the other molecule which leads to the formation of the larger micelles.Therefore,the micelle formation ability of[C10-S-C10im]enhances because the repulsion forces decrease and the hydrophobic interactions become stronger with the spacer lengths increasing.

参考文献

1 Zana,R.J.Colloid Interface Sci.2002,97,205.

2 Zheng,O.;Zhao,J.X.J.Colloid Interface Sci.2006,300,749.

3 Bell,C.P.;Bergsma,M.;Dolbnya,I.P.;Bras,W.;Stuart,M.C.A.;Rowan,A.E.J.Am.Chem.Soc.2003,125,1551.

4 Badea,I.;Wetting,S.;Verrall,R.;Foldvari,M.J.Pharma- col.Biopharmacol.2007,65,414.

5 Yang,H.;Shen,Z.W.;Zhou,X.J.Langmuir 2005,21,10931.

6 Han,S.H.;Xu,J.;Hou,W.G.;Yu,X.M.;Wang,Y.S.J. Phys.Chem.2004,108,15043.

7 Han,S.H.;Hou,W.G.;Xu,J.;Huang,X.R.;Zheng,L.Q. Chem.Phys.Chem.2006,7,394.

8 Kuang,D.;Brezesinski,T.;Smarsly,B.J.Am.Chem.Soc.2004,126,10534.

9 Zhou,Y.;Antonietti,M.Chem.Mater.2004,16,544.

10 Paul,B.K.;Motra,R.J.Colloid Interface Sci.2005,288,261.

11 Leodidis,E.B.;Hatton,A.T.J.Phys.Chem.1990,94,6411.

12 Ao,M.Q.;Xu,G.Y.;Zhu,Y.Y.;Bai,Y.J.Colloid Inter- face Sci.2008,326,490.

13 Dong,B.;Li,N.;Zheng,L.Q.;Inoue,T.Langmuir 2007,23,4178.

14 Zhang,G.D.;Chen,X.;Zhao,Y.R.;Xie,Y.Z.;Qiu,H.Y. J.Phys.Chem.B 2007,111,11708.

15 Wang,T.;Kaper,H.;Amtpmoetti,M.;Smarsly,B. Langmuir 2007,23,1489.

16 Liao,R.J.;Zhu,M.Z.;Yan,J.M.;Yang,L.J;Zhou,X. Acta Chim.Sinica 2011,69,163(in Chinese).(廖瑞金,朱孟兆,严家明,杨丽君,周欣,化学学报,2011,69,163.)

17 Fu,Y.Z.;Hu,S.Q.;Lan,Y.H.;Liu,Y.Q.Acta Chim. Sinica 2010,68,809(in Chinese).(付一政,胡双启,兰艳花,刘亚青,化学学报,2010,68,809.)

18 Yao,X.X.Acta Chim.Sinica 2009,67,1318(in Chinese).(姚雪霞,化学学报,2009,67,1318.)

19 Yuan,S.L.;Cui,P.;Xu,G.Y.;Liu,C.B.Acta Chim.Sinica 2006,64,1659(in Chinese).(苑世领,崔鹏,徐桂英,刘成卜,化学学报,2006,64,1659.)

20 Schuettelkopf,A.W.Acta Cryst.D 2004,60,1355.

21 Berk,H.Free Energy Calculations,2nd ed.,Espoo,Gro- macs Workshop,2007,pp.27~48.

22 Hoover,W.G.Phys.Rev.A 1985,31,1695.

23 Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98,10089.

24 Berendsen,H.J.C.;Postma,J.P.M.;Van,W.F.Intermo- lecular Forces,Reidel Publishing Company Press,Dordrecht,1981,pp.331~334.

25 Lopes,J.N.C.;Deschamps,J.;Padua,A.A.H.J.Phys. Chem.B 2004,108,2038.

26 Jorgensen,W.L.;Maxwell,D.S.;Tirado,J.J.Am.Chem. Soc.1996,133,53.

27 Lopes,J.N.C.;Deschamps,J.;Padua,A.A.H.J.Phys. Chem.B 2004,108,11250.

28 Nijmeijer,N.J.P.;Bakker,A.F.;Bruin,C.J.Chem.Phys.1988,89,3789.

29 Lv,Y.-J.;Wei,B.-B.Sci.China,Ser.G 2006,36,606(in Chinese).(吕勇军,魏炳波,中国科学G辑,2006,36,606.)

30 Xiao,H.Y.;Zhen,Z.;Sun,H.Q.;Cao,X.L;Li,Z.Q.;Song,X.W.;Cui,X.H.;Liu,X.H.Acta Phys.-Chim.Sin.2010,26,422.

31 Allen,M.P.;Tidesley,D.J.Computer Simulation of Liq- uids,Oxford University Press,1987,pp.24~36.

32 Xu,Y.;Wang,R.X.Protein 2006,64,1058.

33 Wu,X.-P.;Liu,Z.-P.Acta Phys.-Chim.Sin.2005,21,1036(in Chinese).(吴晓萍,刘志平,物理化学学报,2005,21,1036.)

34 Xiao,J.X.;Zhao,Z.G.Application Principle of Surfactant,Chemical Industry Press,Bejing,2003,p.496(in Chinese).(肖进新,赵振国,表面活性剂应用原理,化学工业出版 社,北京,2003,p.496.)

35 Zhao,G.X.;Zhu,B.Y.Principles of Surfactant Action,China Light Industry Press,Beijing,2003,pp.30~41(in Chinese).(赵国玺,朱王步瑶,表面活性剂作用原理,中国轻工业出 版社,北京,2003,pp.30~41.)

36 You,Y.;Deng,Y.-S.;Li,E.-J.;Pei,X.-M.;Zhao,J.-X.Acta Phys.-Chim.Sin.2010,26,2200(in Chinese).(游毅,邓永淑,李二军,裴晓梅,赵剑曦,物理化学学 报,2010,26,2200.)

37 Yu,T.;Li,Z.;Ding,W.;Lu,S.-Q.;Luan,H.-X.;Tong,W.;Qu,G.-M.;Li,A.-J.;Cheng,J.-C.Acta Phys.-Chim.Sinica 2010,26,638(in Chinese).(于涛,李钟,丁伟,罗石琼,栾和鑫,童维,曲广淼,李 安军,程杰成,物理化学学报,2010,26,638.)

38 Yu,T.;Li,Z.;Ding,W.;Lu,S.-Q.;Luan,H.-X.;Tong,W.;Qu,G.-M.;Cheng,J.-C.Acta Phys.-Chim.Sin.2010,26,317(in Chinese).(于涛,李钟,丁伟,罗石琼,栾和鑫,童维,曲广淼,程 杰成,物理化学学报,2010,26,317.)

39 Ding,W.;Liu,G.-Y.;Yu,T.;Qu,G.-M.;Cheng,J.-C.;Wu,J.-Z.Acta Phys.-Chim.Sin.2010,26,727(in Chinese).(丁伟,刘国宇,于涛,曲广淼,程杰成,吴军政,物理化 学学报,2010,26,727.)

40 Liu,G.-Y.;Gu,D.-M.;Liu,H.-Y.;Ding,W.;Li,Z.;Cheng,J.-C.Acta Phys.-Chim.Sin.2011,27,1(in Chinese).(刘国宇,顾大明,刘海燕,丁伟,李钟,程杰成,物理化 学学报,2011,27,1.)

41 Xu,J.Ph.D.Dissertation,Shandong University,Jinan,2007(in Chinese).(徐军,博士论文,山东大学,济南,2007.)

42 Israelachvili,I.Intermolecular&Surface Force,Academic Press,San Diego,1992,p.26.

43 Gunsteren,W.F.;Billeter,S.R.;Eising,A.A.;Hunenber- ger,P.H.GROMACS USER MANUAL(EB/OL).Uppsala: Royal Institute of Technology and Uppsala University.(2010-12-05).http://www.gromacs.org

44 Xu,Y.;Feng,J.;Shang,Y.Z.;Liu,H.L.Chin.J.Chem. Eng.2007,15,560.

45 Zhao,J.-X.;You,Y.;Zhu,Y.-P.;Yang,Q.-Y.Chem.J. Chin.Univ.2003,24,845(in Chinese).(赵剑曦,游毅,朱永平,杨齐愉,高等学校化学学报,2003,24,845.)

46 Khurana,E.;Steven,O.;Michael,L.J.Phys.Chem.B 2006,110,22136.
文章导航

/