研究论文

TiO2@MWNTs纳米复合材料的制备及其储锂性能

  • 陈琳 ,
  • 申来法 ,
  • 聂平 ,
  • 苏晓飞 ,
  • 张校刚 ,
  • 李洪森
展开
  • a. 新疆大学化学化工学院, 乌鲁木齐 830046;
    b. 南京航空航天大学材料科学与技术学院, 南京 210016

收稿日期: 2011-05-27

  修回日期: 2011-08-02

  网络出版日期: 2012-02-25

基金资助

国家自然科学基金(Nos.20873064,21173120)以及中国高校博士点专项基金(No.20060287026).

Preparation and Electrochemical Lithium Storage of Titanium Dioxide@Multi-walled Carbon Nanotubes(TiO2@MWNTs) Nanocomposites

  • CHEN Lin ,
  • SHEN Lai-Fa ,
  • NIE Ping ,
  • SU Xiao-Fei ,
  • ZHANG Xiao-Gang ,
  • LI Hong-Sen
Expand
  • a. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046;
    b. College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016

Received date: 2011-05-27

  Revised date: 2011-08-02

  Online published: 2012-02-25

Supported by

Project supported by the National Natural Science Foundation of China(Nos.20873064,21173120),Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20060287026).

摘要

以TiOSO4为钛源,多壁碳纳米管(MWNTs)为载体,溶剂热法制备了多壁碳纳米管/二氧化钛纳米复合材料(TiO2@MWNTs),并利用XRD,SEM,TEM,N2吸附-脱附和TG-DSC等测试手段对合成产物的结构和形貌进行表征,用恒流充放电测试研究TiO2@MWNTs纳米复合材料的储锂性能.N2吸附-脱附曲线和孔径分布曲线证实TiO2@MWNTs存在多级孔道结构以及较大的比表面积.电化学测试结果表明,与纯TiO2颗粒相比,TiO2@MWNTs纳米复合材料具有更好的容量保持率和倍率性能.在1C倍率下,复合材料的可逆容量为200mAh·g-1,循环100圈后容量仍达182mAh·g-1,即使在10C大倍率下,容量约为100mAh·g-1左右.

本文引用格式

陈琳 , 申来法 , 聂平 , 苏晓飞 , 张校刚 , 李洪森 . TiO2@MWNTs纳米复合材料的制备及其储锂性能[J]. 化学学报, 2012 , 70(01) : 15 -20 . DOI: 10.6023/A1105275

Abstract

The TiO2@MWNTs nanocomposites have been prepared by a simple one-step solvothermal method using low-cost TiOSO4 as the raw material in the presence of MWNTs.X-ray diffraction(XRD), scan electron microscopy(SEM),transmission electron microscopy(TEM),nitrogen adsorption-desorption and thermogravimetric-differential scanning calorimeter(TG-DSC)analysis were performed to characterize the structures and morphologies of the TiO2@MWNTs composites.Their lithium storage properties were investigated with galvanostatic charge/discharge measurements when the composites was used as anode materials for lithium-ion batteries(LIBs).The nitrogen adsorption-desorption curve and pore size distribution verified that the TiO2@MWNTs nanocomposites had rich hierarchical pores and large specific surface area.Compared with pristine TiO2,these TiO2@MWNTs nanocomposites exhibited much higher rate capability and even better capacity retention.The reversible capacity of the nanocomposites electrode is up to 200 mAh· g-1 and remain at 182 mAh· g-1 at 1 C after 100 cycles.The reversible capacity is about 100 mAh· g-1 even at the high rate of 10 C.

参考文献

1 Bruce,P.G.;Scrosati,B.;Tarascon,J.M.Angew.Chem.,Int.Ed.2008,47,2930.

2 Goodenough,J.B.;Kim,Y.Chem.Mater.2010,22,587.

3 Endo,M.;Kim,C.;Nishimura,K.;Fujino,T.;Miyashita,K. Carbon 2000,38,183.

4 Ma,R.B.;Fu,Y.B.;Ma,X.H.Acta Phys.-Chim.Sin.2009,25,441(in Chinese).(马若彪,付延鲍,马晓华,物理化学学报,2009,25,441.)

5 Yang,Z.G.;Choi,D.;Kerisit,S.;Rosso,K.M.;Wang,D.H.;Zhang,J.;Graff,G.;Liu,J.J.Power Sources 2009,192,588.

6 Bavykin,D.V.;Friedrich,J.M.;Walsh,F.C.Adv.Mater.2006,18,2807.

7 Shen,L.F.;Zhang,X.G.;Yuan,C.Z.;Fu,Q.B.;Zhang,H. J.Chin.J.Inorg.Chem.2009,25,1601(in Chinese).(申来法,张校刚,原长洲,付清宾,张海军,无机化学学 报,2009,25,1601.)

8 Ahmmad,B.;Kusumoto,Y.;Somekawa,S.;Ikeda,M. Catal.Commun.2008,9,1410.

9 Wu,Y.C.;Liu,X.L.;Ye,M.;Xie,T.;Huang,X.M.Acta Phys.-Chim.Sin.2008,24,97(in Chinese).(吴玉程,刘晓璐,叶敏,解挺,黄新民,物理化学学报,2008,24,97.)

10 Yang,H.P.;Shi,Z.M.;Dai,K.J.;Duan,Y.P.;Wu,J.M. Acta Chim.Sinica 2011,69,536(in Chinese).(杨汉培,石泽敏,戴开静,段云平,吴俊明,化学学报,2011,69,536.)

11 Kedem,S.;Schmidt,J.;Paz,Y.;Cohen,Y.Langmuir 2005,21,5600.

12 Liu,B.;Zeng,H.C.Chem.Mater.2008,20,2711.

13 Shin,H.S.;Jang,Y.S.;Lee,Y.;Jung,Y.;Kim,S.B.;Choi,H.C.Adv.Mater.2007,19,2873.

14 Li,X.H.;Niu,J.L.;Zhang,J.;Li,H.L.;Liu,Z.F.J.Phys. Chem.B 2003,107,2453.

15 Chen,L.;Zhang,B.L.;Qu,M.Z.;Yu,Z.L.Powder Technol.2005,154,70.

16 Eder,D.;Windle,A.H.Adv.Mater.2008,20,1787.

17 Lee,S.W.;Sigmund,W.M.Chem.Commun.2003,(6),780.

18 Jitianu,A.;Cacciaguerra,T.;Berger,M.H.;Benoit,R.;Béguin,F.;Bonnamy,S.J.Non-Cryst.Solids 2004,34,596.

19 Shen,L.F.;Yuan,C.Z.;Luo,H.J.;Zhang,X.G.;Xu,K.;Zhang,F.J.Mater.Chem.2011,21,761.

20 Jamnik,J.;Dominko,R.;Erjavec,B.;Remskar,M.;Pintar,A.;Gaberscek,M.Adv.Mater.2009,21,1.

21 Liu,C.;Fu,L.;Economy,J.J.Mater.Chem.2004,14,1187.

22 Liu,B.;Zeng,H.C.Chem.Mater.2008,20,2711.

23 Gomathi,A.;Vivekchand,S.R.C.;Govindaraj,A.;Rao,N. R.Adv.Mater.2005,17,2757.

24 Kubiak,P.;Pfanzelt,M.;Geserick,J.;Hormann,U.;Husing,N.;Kaiser,U.;Wohlfahrt-Mehrens,M.J.Power Sources 2009,194,1099.

25 Anji Reddy,M.;Satya Kishore,M.;Pralong,V.;Caignaert,V.;Varadaraju,B.;Raveau,U.V.Electrochem.Commun.2006,8,1299.

26 Shen,L.F.;Yuan,C.Z.;Luo,H.J.;Zhang,X.G.;Xu,K.;Zhang,F.;Xia,Y.Y.J.Mater.Chem.2010,20,6998.
文章导航

/