研究论文

巢状微结构银粒子的制备、形成机理及表面增强拉曼光谱研究

  • 范建凤 ,
  • 赵晨醒 ,
  • 范楼珍
展开
  • a 忻州师范学院化学系 忻州 034000;
    b 北京师范大学化学学院 北京 100875

收稿日期: 2011-07-08

  修回日期: 2011-09-29

  网络出版日期: 2011-10-13

基金资助

国家自然科学基金(No. 21073018)资助项目.

Preparation and Mechanism of Nest-like Ag Microcrystals and Their Surface Enhanced Raman Spectroscopic Studies

  • FAN Jian-Feng ,
  • ZHAO Chen-Xing ,
  • FAN Lou-Zhen
Expand
  • a Department of Chemistry, Xinzhou Teachers’ University, Xinzhou 034000;
    b Department of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2011-07-08

  Revised date: 2011-09-29

  Online published: 2011-10-13

Supported by

This work was supported by the National Natural Science Foundation of China (No. 21073018).

摘要

通过选择沉积电位、温度、电解液浓度等条件, 调控银粒子的成核和生长速度, 调控晶面的择优取向, 诱导枝状生长, 从而制得巢状微结构银粒子, 并对其生长机理进行了研究. 采用扫描电子显微镜(SEM)和X 射线衍射光谱(XRD)对巢状微结构银粒子形貌和结构进行表征. 以罗丹明6G 为探针分子, 研究了巢状微结构银粒子的表面增强拉曼光谱(SERS), 并与无孔银粒子对照. 结果表明: 巢状微结构银粒子的SERS 较无孔银粒子有明显增强, 拉曼增强因子达到1.7×106.

本文引用格式

范建凤 , 赵晨醒 , 范楼珍 . 巢状微结构银粒子的制备、形成机理及表面增强拉曼光谱研究[J]. 化学学报, 2012 , 70(03) : 229 -234 . DOI: 10.6023/A1107084

Abstract

Nest-like Ag microcrystals were prepared by electrochemical methods. Synthetic parameters were elucidated, including deposition potential, temperature and concentration that can systematically control branching or faceting growth during electrodeposition process. SEM, XRD and surface enhanced Raman spectroscopy (SERS) were employed to characterize the structure and properties of nest-like Ag microcrystals. The nest-like Ag microcrystals show the enhanced SERS for Rhodamine 6G, and the Raman enhancement factor reaches 1.7×106.

参考文献

1 Ping, Y. Appl. Phys. 2005, 67, 4502.

2 Ball, P. Nature 1992, 355, 761.

3 Hagfeidt, A. Chem. Rev. 1995, 95, 49.

4 Ma, J. Y.; Qu, F. Y.; Xu, Y. P.; Li, X. F. Chem. J. Chin.Univ. 2010, 31, 1103 (in Chinese). (马金艳, 曲凤玉, 徐莹璞, 李晓丰, 高等学校化学学报,2010, 31, 1103.)

5 Guo, Z. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2008 (in Chinese). (郭正, 博士论文, 中国科学技术大学, 合肥, 2008.)

6 Sun, Y. G.; Xia, Y. N. Science 2002, 289, 2176.

7 Siegfried, M. J.; Choi, K. S. Angew. Chem., Int. Ed. 2005,44, 3218.

8 Siegfried, M. J.; Choi, K. S. J. Am. Chem. Soc. 2006, 128,10356.

9 Siegfried, M. J.; Choi, K. S. Angew. Chem., Int. Ed. 2008,47, 368.

10 Huang, J.; Yao, J. L.; Gu, R. A. Acta Chim. Sinica 2007, 65,2505 (in Chinese). (黄洁, 姚建林, 顾仁敖, 化学学报, 2007, 65, 2505.)

11 Sun, Y. G.; Xia, Y. N. Adv. Mater. 2002, 14, 833.

12 Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Nano Lett.2002, 2, 165.

13 Sun, Y. G; Mayers, B.; Herricks, T.; Xia, Y. N. Nano Lett.2003, 3, 955.

14 Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Nano Lett.2004, 4, 1733.

15 Wiley, B.; Xiong, Y. J.; Li, Z. Y.; Yin, Y. D.; Xia, Y. N. Nano Lett. 2006, 6, 765.

16 Wang, Z. X.; Chen, M.; Wu, L. M. Chem. Mater. 2008, 20,3251.

17 Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Shen, J. C.; Meng, X. K. Langmuir 2009, 25, 11890.

18 Cai, W. B.; Ren, B.; Li, X. Q.; She, C. X.; Liu, F. M.; Cai, X. W.; Tian, Z. Q. Surf. Sci. 1998, 406, 9.

19 Gupta, R.; Weimer, W. A. Chem. Phys. Lett. 2003, 374,302.
文章导航

/