研究论文

高分散的介孔碳载Pt 纳米粒子的制备及其对乙二醇的电催化氧化性能

  • 陈智栋 ,
  • 陈转霞 ,
  • 汤佳丽 ,
  • 许娟 ,
  • 王文昌 ,
  • 曹剑瑜
展开
  • a 常州大学石油化工学院 常州 213164;
    b 江苏省太阳能电池与储能技术重点实验室 常州 213164;
    c 日本阔智电子有限公司 大阪 590-0906

收稿日期: 2011-06-24

  修回日期: 2011-08-30

  网络出版日期: 2011-11-03

基金资助

国家自然科学基金(Nos. 21003015, 21103014)、江苏省企业博士集聚计划基金(No. 2011Z0062)、江苏省高校优势学科建设工程和常州大学科研基金(No.ZMF10020015)资助项目.

Highly Dispersed Pt Nanoparticles Supported on Mesoporous Carbon and Its Electrocatalytic Performance for Ethylene Glycol Oxidation

  • CHEN Zhi-Dong ,
  • CHEN Zhuan-Xia ,
  • TANG Jia-Li ,
  • XU Juan ,
  • WANG Wen-Chang ,
  • CAO Jian-Yu
Expand
  • a School of Petrochemical Engineering, Changzhou University, Changzhou 213164;
    b Key Laboratory for Solar Cells and Energy Storage Technology of Jiangsu Province, Changzhou 213164;
    c Qualtec Electronics Co. Ltd., Osaka 590-0906, Japan

Received date: 2011-06-24

  Revised date: 2011-08-30

  Online published: 2011-11-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21003015, 21103014), the Natural Science Foundation of Jiangsu Province (No. 2011Z0062), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and the Technology Research Foundation of Changzhou University (No. ZMF10020015).

摘要

以二氧化硅溶胶为硬模板, 嵌段聚合物F127 为软模板, 通过双模板法合成了高介孔比例、窄孔径分布的介孔碳(MC). 进而经乙二醇还原法制备了高分散的MC 载铂催化剂(Pt/MC). 采用循环伏安、计时电流、线性扫描伏安和电化学阻抗谱法研究了硫酸溶液中乙二醇在Pt/MC催化剂电极上的电化学氧化行为. 实验结果表明, Pt/MC催化剂对乙二醇的电催化氧化性能显著高于商业化炭黑XC72R 载Pt (Pt/XC72R)催化剂. 电化学阻抗谱分析进一步揭示, 乙二醇在Pt/MC 催化剂电极上的电氧化反应具有较低的电荷传递电阻. Pt/MC 催化剂高的电催化活性可以归结于MC大的孔径和均一的介孔结构对电子传输和传质的促进作用.

本文引用格式

陈智栋 , 陈转霞 , 汤佳丽 , 许娟 , 王文昌 , 曹剑瑜 . 高分散的介孔碳载Pt 纳米粒子的制备及其对乙二醇的电催化氧化性能[J]. 化学学报, 2012 , 70(03) : 241 -246 . DOI: 10.6023/A1106231

Abstract

Mesoporous carbon (MC) with high mesopore content and narrow pore size distribution was prepared using colloidal silica as hard template and Pluronic F127 triblock copolymer as soft template, respectively. Then highly dispersed Pt catalyst supported on MC was achieved by ethylene glycol (EG) reduction method. Electrooxidation behavior of EG on the Pt/MC catalyst electrode in sulfuric solution was investigated using cyclic voltammogram (CV), chronoamperometry, linear sweeping voltammogram (LSV) and electrochemical impedance spectra (EIS) analysis. The experimental results indicate that the electrocatalytic performance of the Pt/MC catalyst for EG oxidation is much higher than that of Pt/XC72R catalyst. EIS analysis further reveals that the electrooxidation reaction of EG on the Pt/MC catalyst electrode has a lower charge-transfer resistance. The higher electrocatalytic activity of the Pt/MC catalyst may be due to the promotion of the MC support with large pore size and uniform mesoporous structure on electron transfer ansfer and mass transfer.

参考文献

1 Acres, G. J. K. J. Power Sources 2001, 100, 60.

2 Dyer, C. K. J. Power Sources 2002, 106, 31.

3 Agnolucci, P. Int. J. Hydrogen Energy 2007, 32, 4319.

4 Wang, C. Y. Chem. Rev. 2004, 104, 4727.

5 Kamarudin, S. K.; Daud, W. R. W.; Ho, S. L.; Hasran, U. A. J. Power Sources 2007, 163, 743.

6 Liu, J. Y.; Cao, J. Y.; Wang, Q. H.; Li, X. W.; Zou, Z. Q.; Yang, H. J. Power Sources 2008, 175, 159.

7 Lin, H. L.; Yu, T. L.; Huang, L. N. J. Power Sources 2005, 150, 11.

8 Silva, V. S.; Weisshaar, S.; Reissner, R.; Ruffmann, B.; Vetter, S.; Mendes, A.; Madeira, L. M.; Nunes, S. J. Power Sources 2005, 145, 485.

9 Cao, J. Y.; Chen, M.; Chen, J.; Wang, S. J.; Zou, Z. Q.; Li, Z. L.; Akins, D. L.; Yang, H. Int. J. Hydrogen Energy 2010, 35, 4622.

10 Zhong, Q.-L.; Wang, X.-C.; Zhang, L.; Zhang, X.-H.; Xiang, J.; Ren, B.; Tian, Z.-Q. Acta Chim. Sinica 2003, 61, 1960 (in Chinese). (钟起玲, 王小聪, 章磊, 张小红, 向娟, 任斌, 田中群, 化学学报, 2003, 61, 1960.)

11 Sieben, J. M.; Duarte, M. M. E. Int. J. Hydrogen Energy 2011, 36, 3313.

12 Mench, M. M.; Chance, H. M.; Wang, C. Y. J. Electrochem. Soc. 2004, 151, 1.

13 Serov, A.; Kwak, C. Appl. Catal. B 2010, 97, 2.

14 Qu, W.-L.; Wu, B.; Sun, F.; Gao, Y.; Lu, T.-H.; Liu, C.-P.; Xing, W. Acta Chim. Sinica 2005, 63, 1565 (in Chinese). (曲微丽, 邬冰, 孙芳, 高颖, 陆天虹, 刘长鹏, 邢巍, 化 学学报, 2005, 63, 1565.)

15 Selvaraj, V.; Vinoba, M.; Alagar, M. J. Colloid Interface Sci. 2008, 322, 537.

16 Qu, W.-L.; Wu, B.; Sun, F.; Gao, Y.; Lu, T.-H.; Liu, C.-P.; Xing, W. Acta Phys.-Chim. Sinica 2005, 21, 804 (in Chinese). (曲微丽, 邬冰, 孙芳, 高颖, 陆天虹, 刘长鹏, 邢巍, 物 理化学学报, 2005, 21, 804.)

17 Jin, C. C.; Sun, C.; Dong, R. L.; Chen, Z. D. Electrochim. Acta 2010, 56, 321.

18 Chetty, R.; Scott, K. J. Appl. Electrochem. 2007, 37, 1077.

19 Zhao, G. W.; He, J. P.; Zhang, C. X.; Zhou, J. H.; Chen, X.; Wang, T. J. Phys. Chem. C 2008, 112, 1028.

20 Stober, W.; Fink, A. J. Colloid Interface Sci. 1968, 26, 62.

21 Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Angew. Chem. Int. Ed. 2005, 44, 7053.

22 Fang, B. Z.; Kim, M.; Hwang, S.; Yu, J. S. Carbon 2008, 46, 878.

23 Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. J. Catal. 1995, 154, 98.

24 Antolini, E.; Cardellini, F. J. J. Alloys Compd. 2001, 315, 118.

25 Liu, C.-Y.; Xu, B.; Tang, Y.-W.; Cao, G.-P.; Yang, Y.-S.; Lu, T.-H. Acta Phys.-Chim. Sinica 2011, 27, 604 (in Chinese). (刘春艳, 徐斌, 唐亚文, 曹高萍, 杨裕生, 陆天虹, 物理 化学学报, 2011, 27, 604.)

26 Shim, J.-W.; Park, S.-J.; Ryu, S.-K. Carbon 2001, 39, 1635.

27 Fu, Q.; Li, W.-X.; Yao, Y.-X.; Liu, H.-Y.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.-M.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X.-H. Science 2010, 328, 1141.

28 Yang, S.-D.; Zhang, X.-G.; Huang, J.-S.; Sun, J.-Y. Acta Phys.-Chim. Sinica 2007, 23, 1224 (in Chinese). (杨苏东, 张校刚, 黄建书, 孙景玉, 物理化学学报, 2007, 23, 1224.)

29 Ciureanu, M.; Roberge, R. J. Phys. Chem. B 2001, 105, 3531.
文章导航

/