研究论文

基于三维纳米银修饰电极的硝酸根微型传感芯片研究

  • 胡敬芳 ,
  • 孙楫舟 ,
  • 边超 ,
  • 佟建华 ,
  • 李洋 ,
  • 夏善红
展开
  • a 中国科学院电子学研究所 传感技术国家重点实验室 北京 100080;
    b 中国科学院研究生院 北京 100080

收稿日期: 2011-10-28

  修回日期: 2011-11-18

  网络出版日期: 2011-11-30

基金资助

国家重点基础研究发展计划(973 计划, No. 2009CB320300)、国家水体污染控制与治理科技重大专项课题(No. 2009ZX07527-007)和国家自然科学基金(No. 60971070)资助项目.

Study on Micro-sensing Chip of Nitrate Based on Three-dimensional Nano-structured Silver Modified Electrode

  • HU Jing-Fang ,
  • SUN Ji-Zhou ,
  • BIAN Chao ,
  • TONG Jian-Hua ,
  • LI Yang ,
  • XIA Shan-Hong
Expand
  • a State Key Laboratory of Transducer Technology, Institute of Electronics/Chinese Academy of Sciences, Beijing 100080;
    b Graduate University of Chinese Academy of Sciences/Beijing 100080

Received date: 2011-10-28

  Revised date: 2011-11-18

  Online published: 2011-11-30

Supported by

National Basic Research Program of China (973 Program) (No. 2009CB320300), National Water Pollution Control and Management Technology Major Projects (No. 2009ZX07527-007) and the National Natural Science Foundation Program of China (No. 60971070).

摘要

研制一种基于金叉指微电极阵列(IDA)的电流型硝酸根离子(NO3-)微传感电极芯片. 基于微机电系统(Micro-Electro-Mechanical Systems, MEMS)工艺制备金IDA 微电极, 通过电化学沉积技术在IDA 微电极表面修饰三维枝状结构纳米银敏感膜, 利用敏感膜对硝酸根离子良好的电催化还原性能, 采用脉冲方波伏安(SWV)电化学测量方法,实现对硝酸根离子在25~1000 μmol/L 浓度范围内的快速检测, 灵敏度达9.5 nA/(μmol/L), 线性度为99.98%, 检测下限为10 μmol/L. 考察水体中常见的NO2- , F-, PO43- , SO42- , CO32-, NH4+ , Na+和K+等离子对该传感芯片的干扰性能,传感芯片表现出较好的抗干扰性能. 制备的三维枝状结构纳米银修饰IDA微电极可实现水环境(pH 5.0~9.0)中NO3- 的电化学检测, 对应用于自然水环境中硝酸根离子的现场检测具有积极意义.

本文引用格式

胡敬芳 , 孙楫舟 , 边超 , 佟建华 , 李洋 , 夏善红 . 基于三维纳米银修饰电极的硝酸根微型传感芯片研究[J]. 化学学报, 2012 , 70(03) : 291 -296 . DOI: 10.6023/A1110013

Abstract

A new type of micro amperometric sensing chip based on gold interdigitated microband array (IDA) electrode for trace nitrate determination was developed in this paper. The IDA as working electrode was fabricated with micro-electro-mechanical systems (MEMS) technology. Three-dimensional (3D) nano-structured dendritic silver was electrochemically deposited on the IDA electrode surface, which showed superior electrocatalytic reduction of nitrate than silver nanoparticle modified IDA and regular silver wire electrode. The experiment results demonstrated that the proposed chip showed high sensitivity (9.5 nA/(μmol/L), within a concentration range of 25~1000 μmol/L (R2=0.9998) and low detection limit (10 μmol/L) using square-wave voltammetry method. Interference analysis with 8 kinds of ions ( NO2-, F-, PO43- , SO42- , CO32- , NH4+ , Na+and K+) commonly found in surface water indicated that the microchips in this paper had good selectivity to NO3- . It was noteworthy that the 3D nano-structured dendritic silver as sensing film modified on IDA electrode could electrochemically reduce nitrate at a pH range of 5.0~9.0 which is important for further study of field and real-time monitoring nitrate ions in natural water.

参考文献

1 Streeter, I.; Fietkau, N.; Campo, J.; Roser, M. Phys. Chem. C 2007, 111, 12066.  

2 Le Drogoff, B.; El Khakani, M. A.; Silva, P. R. M.; Chaker, M.; Vijh, A. K. Electroanalysis 2001, 13, 1496.

3 Suzuki, H. Electroanalysis 2000, 12, 715.

4 Ueno, K.; Hayashida, M.; Ye, J.; Misawa, H. Electrochem. Commun. 2005, 7, 165.

5 Haefliger, D.; Cahill, B. P.; Stemmer, A. Microelectron. Eng. 2003, 67, 478.

6 Wang, L; Kariuki, N. N.; Schadt, M. Derrick Mott. Sensors 2006, 6, 679.

7 Amatore, C.; Belotti, M.; Chen, Y.; Roy, E.; Sella, C.; Thouin, L. Electroanal. Chem. 2004, 573, 333.  

8 Morf, W. E.; Koudelka-Hep, M.; de Rooij, N. F. Electroanal. Chem. 2006, 590, 56.

9 Cutress, I. J.; Compton, R. G. Electroanal. Chem. 2010, 645, 166.

10 Qin, B.; Wang, X.; Tang, X. Adv. Earth Sci. 2007, 9, 896 (in Chinese). (秦伯强, 王小东, 汤祥明, 地球科学进展, 2007, 9, 896.)

11 Dima, G. E.; De Vooys, A. C. A.; Koper, M. T. M. Electroanalysis 2009, 21, 796.

12 Dima, G. E.; de Vooys, A. C. A.; Koper, M. T. M. Electroanal. Chem. 2003, 15, 555.

13 Davis, J.; Moorcroft, M. J.; Wilkins, S. J.; Cardosi, M. F.; Compton, R. G. Analyst 2000, 125, 742.

14 Welch, C. M.; Hyde, M. E.; Banks, C. E. Anal. Sci. 2005, 21, 1427.

15 Zhang, X.; Tian, Y. Chin. J. Sensors Actuators 2006, 19, 317 (in Chinese). (张秀玲, 田昀, 传感技术学报, 2006, 19, 317.)

16 Björefors, F.; Strandman, C.; Nyholm, M. Electroanalysis 2000, 122, 55.

17 Aoki, K. Electrochem. Commun. 2005, 7, 527.

18 Davies, T. J.; Banks, C. E.; Compton, R. G. J. Solid State Electrochem. 2005, 9, 808.

19 Herrasti, P.; Ocon, P. Electrochim. Acta 1992, 37, 2209.  

20 Lu, D.; Tanaka, K. Surf. Sci. 1997, 373, 334.

21 Sun, J.; Xia, S.; Bian, C. Chin. J. Anal. Chem. 2010, (5), 672 (in Chinese). (孙楫舟, 夏善红, 边超, 分析化学, 2010, (5), 672.)

22 Kim, D.; Goldberg, I. B.; Judy, J. W. Analyst 2007, 132, 357.

23 Lovri?, M. Textbook of Electroanalytical Methods, Greifswald, 2010, pp. 121~135.  
文章导航

/