研究论文

柯楠因诱导寡聚腺嘌呤核苷酸双螺旋结构增强赛博绿I 荧光及柯楠因的高灵敏和高选择荧光检测

  • 周亚文 ,
  • 李春梅 ,
  • 熊祖洪 ,
  • 黄承志
展开
  • a 西南大学化学化工学院 发光与实时分析教育部重点实验室 重庆 400715;
    b 西南大学物理科学与技术学院 重庆 400715;
    c 西南大学药学院 重庆 400716

收稿日期: 2011-04-25

  修回日期: 2011-09-27

  网络出版日期: 2011-10-25

基金资助

国家重大新药创制(No. 2010ZX09401-306-1-4)、国家自然科学基金(No. 21035005)和西南大学基本科研业务费专项基金项目(No. XDJK2009A001)资助项目.

Investigations on the Enhanced Fluorescence of Sybr Green I by Coralyne-induced Double-stranded Structure of Adenine Oligonucleotides and a Sensitive and Selective Spectroflurometry of Coralyne

  • ZHOU Ya-Wen ,
  • LI Chun-Mei ,
  • XIONG Zu-Hong ,
  • HUANG Cheng-Zhi
Expand
  • a Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715;
    b College of Physics and Technology, Southwest University, Chongqing 400715;
    c College of Pharmaceutical Sciences, Southwest University, Chongqing 400716

Received date: 2011-04-25

  Revised date: 2011-09-27

  Online published: 2011-10-25

Supported by

Project was supported by the National Creating New Drug Program of China (No. 2010ZX09401-306-1-4), National Natural Science Foundation of China (No. 21035005) and Scientific Research Foundation of Southwest University (No. XDJK2009A001).

摘要

柯楠因是原小檗碱类生物碱类似物. 研究发现, 在近生理酸度下柯楠因与寡聚腺嘌呤核苷酸(poly A16)形成双链结构, 明显增强DNA 嵌入染料赛博绿I (SG I)的荧光. 在优化条件下, 530 nm 处荧光增强与60~600 nmol/L 的柯楠因呈线性关系, 检测限(3σ)为30 nmol/L. 方法选择性好, 同倍含量的小檗碱类似物不产生干扰. 将所建立的方法用于柯楠因合成样的测定, 回收率在92.5%~105%之间, 相对标准偏差RSD 小于3.1% (n=3).

本文引用格式

周亚文 , 李春梅 , 熊祖洪 , 黄承志 . 柯楠因诱导寡聚腺嘌呤核苷酸双螺旋结构增强赛博绿I 荧光及柯楠因的高灵敏和高选择荧光检测[J]. 化学学报, 2012 , 70(03) : 352 -356 . DOI: 10.6023/A1104252

Abstract

Coralyne is one of the protoberberine alkaloids analogues. It was found that coralyne could induce adenine oligonucleotides (poly A16) to form a double strand DNA under quasi-physiological conditions, greatly enhancing the fluorescence of Sybr Green I (SG I), a DNA intercalative dye. With the enhanced fluorescence signals of SG I, a new method for the determination of coralyne has been developed in linear range of 60~600 nmol/L, with the detection limit (3σ) of 30 nmol/L. This proposed method is highly selective and other analogues have no interfering effects on the determination, which has been successfully applied for analysis of synthetic samples with the recovery from 92.5% to 105%, and the RSD lower than 3.1%.

参考文献

1 Wang, L. K.; Rogers, B. D.; Hecht, S. M. Chem. Res. Toxicol. 1996, 9, 75.  

2 Wilson, W. D.; Gough, A. N.; Doyle, J. J.; Davidson, M. W. J. Med. Chem. 1976, 19, 1261.  

3 Zee-cheng, K. Y.; Cheng, C. C. J. Pharm. Sci. 1973, 62, 1572.  

4 Joung, I. S.; ?etinkol, Ö. P.; Hud, N. V.; Cheatham, T. E. Nucleic Acids Res. 2009, 37, 7715.  

5 Xing, F.-F.; Song, G.-T.; Ren, J.-S. Chin. J. Appl. Chem. 2006, 23, 1404 (in Chinese). (邢菲菲, 宋广涛, 任劲松, 应用化学, 2006, 23, 1404.)

6 Xing, F. F.; Song, G. T.; Ren, J. S.; Chaires, J. B.; Qu, X. G. FEBS Lett. 2005, 579, 5035.  

7 Polak, M.; Hud, N. V. Nucleic Acids Res. 2002, 30, 983.  

8 Giri, P.; Kumar, G. S. Arch. Biochem. Biophys. 2008, 474, 183.  

9 García, B.; Ibeas, S.; Ruiz, R.; Leal, J. M.; Biver, T.; Boggioni, A.; Secco, F.; Venturini, M. J. Phys. Chem. B 2009, 113, 188.  

10 Song, G. T.; Chen, C.; Qu, X. G.; Miyoshi, D.; Ren, J. S.; Sugimoto, N. Adv. Mater. 2008, 20, 706.  

11 Lü, Z. Z.; Wei, H.; Li, B. L.; Wang, E. K. Analyst 2009, 134, 1647.  

12 Xu, X. W.; Wang, J.; Yang, F.; Jiao, K.; Yang, X. R. Small 2009, 5, 2669.  

13 Zipper, H.; Brunner, H.; Bernhagen, J.; Vitzthum, F. Nucleic Acids Res. 2004, 32, e103.  

14 Garc?a-Ca?as, V.; González, R.; Cifuentes, A. J. Agric. Food Chem. 2002, 50, 4479.  

15 Benson, S. C.; Mathies, R. A.; Glazer, A. N. Nucleic Acids Res. 1993, 21, 5720.  

16 Kanony, C.; ?kerman, B.; Tuite, E. J. Am. Chem. Soc. 2001, 123, 7985.  

17 Chen, X.-Y.; Peng, X.-J. Chemistry 2004, 67, w68 (in Chinese).(陈秀英, 彭孝军, 化学通报, 2004, 67, w68.)  

18 Vitzthum, F.; Geiger, G.; Bisswanger, H.; Brunner, H.; Bernhagen, J. Anal. Biochem. 1999, 276, 59.  

19 Rengarajan, K.; Cristol, S. M.; Mehta, M.; Nickerson, J. M. Mol. Vision 2002, 8, 416.

20 Wege, H.; Chui, M. S.; Le, H. T.; Tran, J. M.; Zern, M. A. Nucleic Acids Res. 2003, 31, e3.  

21 Barbesti, S.; Citterio, S.; Labra, M.; Baroni, M. D.; Neri, M. G.; Sgorbati, S. Cytometry 2000, 40, 214.  

22 Webster, J. R.; Burns, M. A.; Burke, D. T.; Mastrangelo, C. H. Anal. Chem. 2001, 73, 1622.  

23 Gupta, M.; Yates, C. R.; Meibohm, B. Anal. Biochem. 2005, 344, 292.  

24 Mondal, S.; Venkataraman, V. J. Biochem. Biophys. Methods 2007, 70, 773.  

25 Wang, J.; Liu, B. Chem. Commun. 2008, 4759.  

26 Williamson, J. R. Proc. Natl. Acad. Sci. 1993, 90, 3124.  

27 Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S. Y. Angew. Chem., Int. Ed. 2006, 45, 8149.  

28 Rosa, M.; Dias, R.; Miguel, M. D. G.; Lindman, B. Biomacromolecules 2005, 6, 2164.  

29 Mou, T. C.; Shen, M. C.; Terwilliger, T. C.; Gray, D. M. Biopolymers 2003, 70, 637.  

30 Persil, Ö.; Santai, C. T.; Jain, S. S.; Hud, N. V. J. Am. Chem. Soc. 2004, 126, 8644.  
文章导航

/