研究论文

四硼酸钾水溶液结构

  • 朱发岩 ,
  • 房春晖 ,
  • 房艳 ,
  • 周永全 ,
  • 许沙 ,
  • 陶松 ,
  • 曹领帝
展开
  • a 中国科学院青海盐湖研究所 西宁 810008;
    b 中国科学院研究生院 北京 100049

收稿日期: 2011-05-31

  修回日期: 2011-08-03

  网络出版日期: 2011-09-26

基金资助

中国科学院与国家基金委大科学工程联合基金(No. 11079047)和中国科学院知识创新性工程重要方向项目(No. KZCX2-EW-307)资助项目.

Structure of Aqueous Potassium Tetraborate Solutions

  • Zhu Fayan ,
  • Fang Chunhui ,
  • Fang Yan ,
  • Zhou Yongquan ,
  • Xu Sha ,
  • Tao Song ,
  • Cao Lingdi
Expand
  • a Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;
    b Graduate University of Chinese Academy of Sciences, Beijing 100049

Received date: 2011-05-31

  Revised date: 2011-08-03

  Online published: 2011-09-26

Supported by

Project supported by Joint Fund for Large Science Project of the National Natural Science Foundation of China and the Chinese Academy of Sciences (No. 11079047) and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KZCX2-EW-307).

摘要

研究了298.15和323.15 K 广泛浓度范围内四硼酸钾溶液pH, 并根据化学反应平衡常数和牛顿迭代法计算获得了溶液化学物种分布图. 典型样品用拉曼光谱进行核实. 研究表明, 高浓溶液中存在主要化学物种是B4O5(OH)42?, 次要化学物种是B3O3(OH)4? 和B(OH)42?. 用X 射线散射法研究了298 和323 K 高浓四硼酸钾溶液结构. 用几何模型定量描述B4O5(OH)42?, B3O3(OH)4? 和B(OH)4? 离子内、离子间、分子间的相互作用, 并用最小二乘法进行精修. 模型计算和精修给出硼氧六元环内原子间距和配位数, 并与晶体结构很好一致, 表明高浓溶液中离子内有序程度较高. 同时给出K+和硼酸根离子水合数和水合距离, 以及接触离子对的结构信息, 并进一步简单讨论温度和浓度变化对溶剂结构的影响.

本文引用格式

朱发岩 , 房春晖 , 房艳 , 周永全 , 许沙 , 陶松 , 曹领帝 . 四硼酸钾水溶液结构[J]. 化学学报, 2012 , 0(04) : 445 -452 . DOI: 10.6023/A1105313

Abstract

The pH of aqueous K2B4O7 solutions at 298.15 and 323.15 K at a wide range of concentration has been determined and the chemical species distribution of the solutions calculated from equilibrium constants by Newton iterative algorithm. The chemical species of typical samples were confirmed by Raman spectrum. The results show that the major species B4O5(OH)42? and the minor chemical species B3O3(OH)4? and B(OH)4? exist in highly concentrated aqueous solutions. The structure of highly concentrated aqueous K2B4O7 solutions at 298 and 323 K was studied by X-ray scattering further. The interactions of intra-anion, interionic and intermolecular of B4O5(OH)42?, B3O3(OH)4? and B(OH)4? were descripted quantitatively by geometrical model and calculated by least square method. The model calculation and refinement provided distance and coordination number between atoms in boroxol six-member ring, which are in good agreement with the crystal structure. The order degree in intra-anion is high in concentrated aqueous solutions. At the same time, we gained information about the hydration number and hydration distance of K+, borate ions and contact ion-pair. We also briefly discussed the effect of temperature and concentration on solvent structure.

参考文献

1 Marcus, Y. J. Solution Chem. 1996, 25, 455.  

2 Bakker, H. J.; Skinner, J. L. Chem. Rev. 2010, 110, 1498.  

3 Megyes, T.; Balint, S.; Peter, S.; Grosz, T.; Bako, I.; Krienke, H.; Bellissent-Funel, M. C. J. Phys. Chem. B 2009, 113, 4054.  

4 Fang, C. H. Prog. Chem. 1996, 8, 318 (in Chinese). (房春晖, 化学进展, 1996, 8,318.)

5 Marcus, Y.; Hefter, G. Chem. Rev. 2006, 106, 4585.  

6 Zhou, Y. Q.; Fang, C. H.; Fang, Y. Acta Phys.-Chim. Sin. 2010, 26, 2323 (in Chinese). (周永全, 房春晖, 房艳, 物理化学学报, 2010, 26, 2323.)

7 Liu, Z. H.; Gao, B.; Hu, M. C.; Li, S. N.; Xia, S. P. Spectrochim. Acta, Part A 2003, 59, 2741.  

8 Takekiyo, T.; Yoshimura, Y. J. Phys. Chem. A 2007, 111, 6039.  

9 Li, J.; Xia, S. P.; Gao, S. Y. Spectrochim. Acta 1995, 51A, 519.  

10 Toledano, P. Rev. Chim. Miner. 1964, 1, 372.

11 Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Analysis of Salt and Brine, Science Press, Beijing, 1988, pp. 55~57 (in Chinese). (中国科学院青海盐湖研究所, 卤水和盐的分析方法, 科 学出版社, 北京, 1988, pp. 55~57.)  

12 Xu, J. X.; Fang, Y.; Fang, C. H. Comput. Appl. Chem. 2009, 26, 553 (in Chinese). (徐继香, 房艳, 房春晖, 计算机与应用化学, 2009, 26, 553.)

13 Fang, C. H.; Ma, P. H.; Fang, Y.; Yang, B.; Lei, Y. C. Acta Chim. Sinica 2000, 58, 1393 (in Chinese). (房春晖, 马培华, 房艳, 杨波, 雷亚川, 化学学报, 2000, 58, 1393.)

14 Prince, E. International Tables for Crystallography, Vol. C, 3rd ed., Kluwer Academic Publishers, London, 2004, pp. 230~235; 255; 555~556; 658.

15 Ingri, N. Acta Chem. Scand. 1963, 17, 573.  

16 Spessard, J. E. J. Inorg. Nucl. Chem. 1970, 32, 2607.  

17 Liu, Z. H.; Gao, B.; Li, S. N.; Hu, M. C.; Xia, S. P. Spectrochim. Acta, Part A 2004, 60, 3125.  

18 Christ, C. L.; Clark, J. R. Phys. Chem. Miner. 1977, 2, 59.  

19 Levy, H. A.; Lisensky, G. C. Acta Cryst. 1978, B34, 3502.  

20 Martinez-Ripoll, M.; Martinez-Carrera, S.; Garcia-Blanco, S. Acta Cryst. 1971, B27, 672.  

21 Menchetti, S.; Sabelli, C. Acta Cryst. 1978, B34, 1080.  

22 Ohtomo, N.; Arakawa, K.; Takeuchi, M.; Yamaguchi, T.; Ohtaki, H. Bull. Chem. Soc. Jpn. 1981, 54, 1314.  

23 Impey, R. W.; Maden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87, 5071.  

24 Migliore, M.; Fornili, S. L.; Spohr, E.; PBlinkL, G.; Heinzinger, K. Z. Naturforsch 1986, A41, 826.

25 Tongraar, A.; Liedl, K. R.; Rode, B. M. J. Phys. Chem. A 1998, 102, 10340.  
文章导航

/