研究论文

MnO2 纳米溶胶-甲醛化学发光体系及其分析应用研究

  • 杜建修 ,
  • 王虹
展开
  • 陕西省生命分析化学重点实验室 陕西师范大学化学化工学院 西安 710062

收稿日期: 2011-09-03

  修回日期: 2011-10-24

  网络出版日期: 2011-11-01

基金资助

陕西省自然科学基础研究计划项目(No. 2011JM2004), 中央高校基本科研业务费专项资金(No. GK200902012)和陕西师范大学优秀科技预研项目(No.200902016)资助项目.

Chemiluminescence of Nano-Colloidal MnO2 with Formaldehyde and Its Analytical Application

  • Du Jianxiu ,
  • Wang Hong
Expand
  • Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062

Received date: 2011-09-03

  Revised date: 2011-10-24

  Online published: 2011-11-01

Supported by

Project was supported by the Natural Science Foundation of Shaanxi Province (No. 2011JM2004), Fundamental Research Funds for the Central Universities (No. GK200902012), Excellent Preresearch Projects of Science and Technology of Shaanxi Normal University (No. 200902016).

摘要

Na2S2O3 在中性水溶液中还原KMnO4 可制备得到暗棕色的可溶性MnO2 溶胶. 所制备的MnO2 溶胶透明、稳定,最大吸收波长位于357 nm 处, 平均粒径约40 nm. 研究发现, 所制备的MnO2纳米溶胶在酸性介质中与甲醛反应可产生弱的化学发光. 考察了近30 种药物分子在MnO2 纳米溶胶-甲醛体系中的化学发光行为. 结果表明, 吩噻嗪类药物、氨基硫醇类药物等对该体系的化学发光信号具有显著的增强作用. 据此, 建立了利用这一化学发光体系测定五种吩噻嗪类药物和四种氨基硫醇类药物新的流动注射化学发光分析方法. 所建立的方法被成功地用于片剂中奋乃静含量和猪饲料中盐酸氯丙嗪含量的测定. 通过对化学发光光谱、荧光光谱、紫外可见吸收光谱等实验的研究, 提出了可能的化学发光反应机理. 所有反应的化学发光光谱的最大发射波长均位于630~640 nm 间, 与分析物的种类无关. 当向反应体系中加入单线态氧清除剂叠氮化钠和三亚乙基二胺时, 反应的化学发光强度被不同程度的抑制, 这表明单线态氧可能是该化学发光反应的发光体.

本文引用格式

杜建修 , 王虹 . MnO2 纳米溶胶-甲醛化学发光体系及其分析应用研究[J]. 化学学报, 2012 , 0(05) : 537 -543 . DOI: 10.6023/A1109031

Abstract

Water-soluble forms of colloidal MnO2 were prepared by the chemical reduction of KMnO4 with Na2S2O3 under neutral aqueous condition. The as-prepared colloidal MnO2 solution is dark-brown, transparent, stable, and possesses the maximum absorption peak at 375 nm and an average diameter of 40 nm. The as-prepared nano-colloidal MnO2 was found to react with formaldehyde to generate weak chemiluminescence (CL) under acidic condition. The effects of more than 30 pharmaceuticals on the nano-colloidal MnO2-formaldehyde CL system were tested. Pharmaceuticals including phenothiazines and aminoethanethiols were observed to enhance the CL signal significantly. The experimental conditions were well optimized and the analytical figures for five phenothiazines and four aminoethanethiols were presented. The method was validated by the analysis of perphenazine in tablets and chlorpromazine hydrochloride in swine feed. The CL reaction mechanism was discussed by the study of CL spectra, fluorescence spectra, UV-vis absorption spectra, and other experiments. All of CL reactions had the same maximum emission wavelength about 640 nm, which suggested that the CL emitter was independent of analytes. The CL signal was inhibited obviously by single-state oxygen scavengers, sodium azide and 1,4-diazabicyclo[2,2,2]octane, indicating that single-state oxygen dimer was the potential CL emitter for the present CL reaction.

参考文献

1 Hindson, B. J.; Barnett, N. W. Anal. Chim. Acta 2001, 445,1.  

2 Adcock, J. L.; Francis, P. S.; Barnett, N. W. Anal. Chim. Acta 2007, 601, 36.  

3 Brown, A. J.; Francis, P. S.; Adcockb, J. L.; Lima, K. F.; Barnett, N. W. Anal. Chim. Acta 2008, 624, 175.  

4 Du, J.-X.; Liu, W.-X.; Lü, J.-R. Acta Chim. Sinica 2004, 62, 1323 (in Chinese). (杜建修, 刘文侠, 吕九如, 化学学报, 2004, 62, 1323.)

5 Barnett, N. W.; Hindson, B. J.; Lewis, S. W.; Jones, P.; Worsfold, P. J. Analyst 2001, 126, 1636.  

6 He, Y.-H.; Lü, J.-R.; Zhu, X.-H.; Du, J.-X. Acta Chim. Sinica 2005, 63, 729 (in Chinese). (何云华, 吕九如, 祝兴华, 杜建修, 化学学报, 2005, 63,729.)

7 Zheng, X.-W.; Zhang, Z.-J. Sens. Actuators, B 2002, 84,142.  

8 Perez-Benito, J. F. Inorg. Chem. 1989, 28, 390.  

9 Perez-Benito, J. F.; Arias, C.; Amat, E. A. J. Colloid Interface Sci. 1996, 177, 288.  

10 Mallapu, R. E.; Abdul Ahad, H.; Sreenivasulu, R.; Kishore, K. R. B.; Mahendra, K. P.; Kranthi, G.; Ramya, S. P. J. Pharm. Res. 2011, 4, 735

11 Chen, P.-L.; Hu, X.-L.; Liu, S.-P.; Liu, Z.-F.; Song, Y.-Q. Spectrochim. Acta, A 2010, 77, 207.  

12 Mokhtari, A.; Rezaei, B. Anal. Methods 2011, 3, 996.  

13 Li, Y.-H.; Niu, W.-F.; Lu, J.-R. Talanta 2007, 71, 1124.  

14 Hwang, R. Y.; Xu, G.-R.; Han, J.; Lee, J. Y.; Choi, H. N.; Lee, W.-Y. J. Electroanal. Chem. 2011, 656, 258.  

15 Parvin, M. H. Electrochem. Commun. 2011, 13, 366.  

16 Xiao, Q.; Hu, B. J. Chromatogr. B 2010, 878, 1599

17 Ma, Q.-W.; Wang, J.-X.; Li, Y.-L.; Li, L.-X.; Guo, H.-J. Shandong Metallurgy 2009, 31, 150 (in Chinese). (马清文, 王俊秀, 李艳丽, 李龙霞, 国红杰, 山东冶金,2009, 31, 150.)

18 China Pharmacopoeias Committee, Chinese Pharmacopoeia, Vol. II, Chemical Industry Press, Beijing, 2005, p. 328 (in Chinese). (中华人民共和国药典委员会, 中华人民共和国药典(二 部), 化学工业出版社, 北京, 2005, p. 328.)

19 Niu, W.-F.; Feng, N.; Nie, F.; Lu, J.-R. Anal. Bioanal. Chem. 2006, 385, 153.  

20 Mellinger, T. J.; Keeler, C. E. Anal. Chem. 1963, 35, 554.  

21 Khan, A. U.; Kasha, M. J. Am. Chem. Soc. 1970, 92, 3293.  

22 Ouannes, C.; Wilson, T. J. Am. Chem. Soc. 1968, 90, 6527.  

23 Harbour, J. R.; Issler, S. L. J. Am. Chem. Soc. 1982, 104,903.  

24 Chen, J.-W.; Hu, T.-X. Chin. J. Lumin. 1995, 16, 273 (in Chinese). (陈季武, 胡天喜, 发光学报, 1995, 16, 273.)

25 Kazakov, D. V.; Kazakov, V. P.; Maistrenko, G. Y.; Malzev, D. V.; Schmidt, R. J. Phys. Chem. A 2007, 111,4267.  

26 Perez-Benito, J. F. J. Colloid Interface Sci. 2002, 248, 130.  

27 Khan, Z.; Din, K. Transition Met. Chem. 2001, 26, 481.  
文章导航

/