研究论文

7,10,12 顶点Fe(II)碳硼烷夹心配合物NLO 性质的DFT 研究

  • 邹海艳 ,
  • 麻娜娜 ,
  • 李雪 ,
  • 孙世玲 ,
  • 仇永清
展开
  • 东北师范大学化学学院 功能材料化学研究所 长春 130024

收稿日期: 2011-08-05

  修回日期: 2011-11-08

  网络出版日期: 2011-12-12

基金资助

国家自然科学基金(No. 20873017)和吉林省自然科学基金(No. 20101154)资助项目.

DFT Study on Nonlinear Optical Properties of 7,10,12 Vertexes Ferradicarbollide Sandwich Complexes

  • Zou Haiyan ,
  • Ma Nana ,
  • Li Xue ,
  • Sun Shiling ,
  • Qiu Yongqing
Expand
  • Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024

Received date: 2011-08-05

  Revised date: 2011-11-08

  Online published: 2011-12-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 20873017) and the Natural Science Foundation of Jilin Province (No. 20101154).

摘要

采用密度泛函理论(DFT) CAM-B3LYP 方法对系列7,10,12 顶点Fe(II)碳硼烷与1,2,4,5-Me4C6H2 (dur1),1,2,3,4-Me4C5H (dur2)形成的夹心配合物的非线性光学(NLO)性质进行了计算分析. 结果表明, Fe(II)碳硼烷的顶点数和硝基的取代位置影响分子的几何构型, 从而影响分子的NLO性质; Fe(II)碳硼烷夹心配合物的偶极矩与极化率随碳硼烷的顶点数增加而增大; 10 顶点Fe(II)碳硼烷分子的前线分子轨道能级差较小, 其第一超极化率βtot 值大于12 及7 顶点Fe(II)碳硼烷分子; 硝基与Fe(II)处于对位时, 其βtot 值大于未取代分子; 硝基与Fe(II)处于邻位时, βtot 值较未取代分子小; 在此类Fe(II)碳硼烷夹心配合物中, 碳硼烷既可以作电子给体, 也可以作电子受体.

本文引用格式

邹海艳 , 麻娜娜 , 李雪 , 孙世玲 , 仇永清 . 7,10,12 顶点Fe(II)碳硼烷夹心配合物NLO 性质的DFT 研究[J]. 化学学报, 2012 , 70(07) : 897 -902 . DOI: 10.6023/A1108053

Abstract

The nonlinear optical (NLO) properties of a series of sandwich complexes which are coordinated by 7,10,12 vertexes ferradicarbaboranes and 1,2,4,5-Me4C6H2 (dur1), 1,2,3,4-Me4C5H (dur2) were investigated by density functional theory (DFT) CAM-B3LYP method. The results indicate that the vertexes of ferradicarbaboranes and the substitution position of nitryl both affect the molecular geometry and then affect the NLO properties of molecules. The dipole moment and the polarizability are both enhanced with the increase of the vertexes of ferradicarbaboranes. The HOMO-LUMO energy gaps of molecules with 10 vertexes ferradicarbaboranes are relatively smaller, so the first hyperpolarizabilities (βtot) values of them are larger than the molecules with 12 and 7 vertexes ferradicarbaboranes. When replacing of the atom H of Fe(II) para-position by nitro, the βtot values of molecules are larger than the non-substitution molecules; however, the atom H of Fe(II) ortho-position is substituted by nitro, the βtot values of molecules are smaller than the non-substitution molecules. In the studied molecules, the carboranes can act as either electronic donor or acceptor.

参考文献

1 Torre, G. D. L.; Vázquez, P.; López, A.; Torres, T. Chem. Rev. 2004, 104, 3723.  

2 Zhang, X. L.; Li, M.; Shi, Z. S.; Cui, Z. C. Mater. Lett.2011, 65, 1404.  

3 Coe, B. J.; Harris, J. A.; Brunschwig, B. S. J. Am. Chem. Soc. 2005, 127, 13399.  

4 Allis, D. G.; Spencer, J. T. J. Organomet. Chem. 2000,614-615, 309.  

5 Wes, R. S.; Gaylord, T. K. Appl. Phys. A 1985, 37, 191.  

6 Wu, K. C.; Chen, C. T. Appl. Phys. A 1992, 54, 209.  

7 Nie, W. Adv. Mater. 1993, 5, 520.  

8 Hari, S. N. Appl. Organomet. Chem. 1991, 5, 349.  

9 Bella, S. D. Chem. Soc. Rev. 2001, 30, 355.  

10 Shameema, O.; Jemmis, E. D. Inorg. Chem. 2009, 48, 7818.  

11 Qiu, Y. Q.; Liu, X. D.; Sun, S. L.; Fan, M.; Su, Z. M.; Wang, R. S. J. Mol. Struct. (Theochem) 2008, 863, 66.  

12 Fan, M.; Sun, S. L.; Qiu, Y. Q.; Liu, X. D.; Su, Z. M. Int. J. Quantum Chem. 2011, 111, 1039.  

13 Fan, M.; Qiu, Y. Q.; Sun, S. L.; Liu, X. D.; Su, Z. M. Acta Chim. Sinica 2009, 67, 1171 (in Chinese). (樊敏, 仇永清, 孙世玲, 刘晓东, 苏忠民, 化学学报,2009, 67, 1171.)

14 Chen, H.; Qiu, Y. Q.; Sun, S. L.; Liu, C. G.; Su, Z. M. Acta Chim. Sinica 2007, 65, 305 (in Chinese). (陈徽, 仇永清, 孙世玲, 刘春光, 苏忠民, 化学学报,2007, 65, 305.)

15 Li, X.; Sun, S. L.; Ma, N. N.; Fan, M.; Qiu, Y. Q.; Fu, Q. Acta Chim. Sinica 2011, 69, 523 (in Chinese). (李雪, 孙世玲, 麻娜娜, 樊敏, 仇永清, 付强, 化学学报,2011, 69, 523.)

16 Ma, N. N.; Qiu, Y. Q.; Sun, S. L.; Liu, C. G.; Fan, M.; Su, Z. M. Sci. China Chem. 2010, 53, 1149.  

17 ?tíbr, B.; Bakardjiev, M.; Holub, J.; R??i?ka, A.; Padělková, Z.; ?těpni?ka, P. Inorg. Chem. 2011, 50, 3097.  

18 Barlow, S.; Bunting, H. E.; Ringham, C.; Green, J. C.; Bublitz, G. U.; Boxer, S. G.; Perry, J. W.; Marder, S. R. J. Am. Chem. Soc. 1999, 121, 3715.  

19 Hanusa, T. P.; Huffman, J. C.; Todd, L. J. Polyhedron 1982,1, 77.  

20 Holub, J.; Gru1ner, B.; Perekalin, D. S.; Golovanov, D. G.; Lyssenko, K. A.; Petrovskii, P. V.; Kudinov, A. R.; ?tíbr, B. Inorg. Chem. 2005, 44, 1655.  

21 Perekalin, D. S.; Holub, J.; Golovanov, D. G.; Lyssenko, K. A.; Petrovskii, P. V.; ?tíbr, B.; Kudinov, A. R. Organometallics2005, 24, 4387.  

22 ?tíbr, B. J. Organomet. Chem. 2005, 690, 2694.  

23 Perekalin, D. S.; Glukhov, I. V.; ?tíbr, B.; Kudinov, A. R. Inorg. Chim. Acta 2006, 359, 3264.  

24 Perekalin, D. S.; Glukhov, I. V.; Holub, J.; C?sa?ova, I. ?tíbr, B.; Kudinov, A. R. Organometallics 2008, 27, 5273.  

25 ?tíbr, B.; Bakardjiev, M.; Holub, J.; R??i?ka, A.; Kv??alová, M. Inorg. Chem. 2009, 48, 10904.  

26 Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpaly, L. Chem. Phys. Lett. 1982, 89, 418.  

27 Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R. M. J. Phys. Chem.1993, 97, 5852.  

28 Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004,393, 51.  

29 Sim, F.; Chin, S.; Dupuis, M.; Rice, J. E. J. Phys. Chem.1993, 97, 1158.  

30 Dehu, C.; Meyers, F.; Bredas, J. L. J. Am. Chem. Soc. 1993,115, 6198.  

31 Matsuzawa, N.; Dixon, D. Int. J. Quantum Chem. 1992, 44,497.

32 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

33 Dumur, F.; Mayer, C. R.; Hoang-Thi, K.; Ledoux-Rak, I.; Miomandre, F.; Clavier, G.; Dumas, E.; Méallet-Renault, R.; Frigoli, M.; Zyss, J.; Sécheresse, F. Inorg. Chem. 2009,48, 8120.  

34 Barone, V.; Polimen, A. Chem. Soc. Rev. 2007, 36, 1724.  

35 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 1, Gaussian, Inc., Wallingford, CT, 2009.  

36 Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1995.  

37 Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998,19, 610.  

38 Janjua, M. R. S. A.; Guan, W.; Yan, L. K.; Su, Z. M.; Karim, A.; Akbar, J. Eur. J. Inorg. Chem. 2010, 3466.

文章导航

/