研究论文

Cu2ZnSnS4 纳米晶的制备及其三阶非线性光学性能的研究

  • 王芸 ,
  • 梁晓娟 ,
  • 蔡倩 ,
  • 冯丽 ,
  • 邵明国 ,
  • 钟家松 ,
  • 向卫东
展开
  • a 温州大学化学与材料工程学院 温州 325035;
    b 同济大学材料科学与工程学院 上海 201804

收稿日期: 2011-09-03

  修回日期: 2011-12-25

  网络出版日期: 2012-04-23

基金资助

国家自然科学基金(Nos. 50772075, 50972107)和浙江省科技创新团队项目(No. 2009R50010).

Synthesis of Cu2ZnSnS4 Nanocrystals and Its Third-order Nonlinear Optical Properties

  • Wang Yun ,
  • Liang Xiaojuan ,
  • Cai Qian ,
  • Feng Li ,
  • Shao Mingguo ,
  • Zhong Jiasong ,
  • Xiang Weidong
Expand
  • a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 China;
    b College of Materials Science and Engineering, Tongji University, Shanghai 201804 China

Received date: 2011-09-03

  Revised date: 2011-12-25

  Online published: 2012-04-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 50772075, 50972107) and Zhejiang Province Key Scientific and Technological Innovations Team of China (No. 2009R50010).

摘要

以乙酰丙酮铜、醋酸锌、二氯亚锡、油胺和硫粉为前驱体, 采用one-pot 法合成出了单分散的Cu2ZnSnS4 (CZTS)纳米晶. 所得样品采用X 射线粉末衍射仪(XRD), 能量色散谱仪(EDS), 透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), 光电子能谱仪(XPS), 紫外-可见光谱仪(UV-vis)和Z-扫描(Z-scan)技术对其结构组成、形貌、性能等进行了表征. 结果表明: 所获得的产物为四方相结构的六边形CZTS 纳米颗粒, 直径约为10 nm. 计算出尺寸大小为10 nm,13 nm 的纳米晶的三阶非线性光学折射率γ (-1.08×10-15, -9.08×10-17 m2·W-1), 三阶非线性光学吸收系数β (6.5×10-9, 3.69×10-11 m·W-1)以及三阶非线性光学极化率χ(3) (1.49×10-9, 4.35×10-10 esu). 并探讨了CZTS 纳米晶可能的形成机理, 及引起三阶光学非线性发生变化的原因.

本文引用格式

王芸 , 梁晓娟 , 蔡倩 , 冯丽 , 邵明国 , 钟家松 , 向卫东 . Cu2ZnSnS4 纳米晶的制备及其三阶非线性光学性能的研究[J]. 化学学报, 2012 , 70(07) : 903 -910 . DOI: 10.6023/A1109032

Abstract

Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by one-pot method using copper( II) acetylacetonate, zinc(II) acetate, tin(II) chloride, S powder and oleylamine as precursors. The composition, structure, morphology and properties of the CZTS were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis and Z-scan technology. The results showed that the as-prepared CZTS nanocrystals were tetragonal phase with hexagonal shape and particle size about 10 nm. The nonlinear refraction index γ (-1.08×10-15, -9.08×10-17 m2·W-1), nonlinear absorption coefficient β (6.5×10-9, 3.69×10-11 m·W-1) and third-order optical susceptibility χ(3) (1.49× 10-9, 4.35×10-10 esu) of CZTS nanocrystals with different size (10 nm, 13 nm) were calculated. Finally, the growth mechanism of nanocrystals and the nonlinear optical properties were investigated.

参考文献

1 Scragg, J. J.; Dale, P. J.; Peter, L. M. Thin Solid Films 2009,517, 2481.  

2 Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science2005, 310, 462.  

3 Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488.  

4 Ma, W.; Luther, J. M.; Zheng, H.-M.; Wu, Y.; Alivisatos, A. P. Nano Lett. 2009, 9, 1699.  

5 Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A. J. Am. Chem. Soc. 2008, 130, 16770.  

6 Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R. Nano Lett. 2009, 9, 3060.  

7 Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S. J.; Bojarczuk, N. A.; Mitzi, D.; Guha, S. Appl. Phys. Lett.2010, 97, 143508.  

8 Katagiri, H.; Saitoh, K.; Washio, T.; Shinohara, H.; Kurumadani, T.; Miyajima, S. Sol. Energy Mater. Sol. Cells2001, 65, 141.  

9 Kamoun, N.; Bouzouita, H.; Rezig, B. Thin Solid Films2007, 51, 5949.

10 Kumar, Y. B. K.; Babu, G. S.; Bhaskar, P. U.; Raja, V. S. Sol. Energy Mater. Sol. Cells 2009, 93, 1230.  

11 Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Sol. Energy Mater. Sol. Cells 2009, 93, 583.  

12 Tanaka, K.; Moritake, N.; Uchiki, H. Sol. Energy Mater. Sol. Cells 2007, 91, 1199.  

13 Scragg, J. J.; Dale, P. J.; Peter, L. M.; Zoppi, G.; Forbes, I. Phys. Status Solidi B 2008, 245, 1772.  

14 Moriya, K.; Watabe, J.; Tanaka, K.; Uchiki, H. Phys. Status Solidi C 2006, 3, 2848.  

15 Todorov, T. K.; Reuter, K. B.; Mitzi, D. B. Adv. Mater.2010, 22, E156.

16 Vandyshev, Y. V.; Dneprovskii, V. S.; Klimov, V. I. Sov. Phys. JETP 1992, 74, 144.

17 Banin, U.; Cerullo, G.; Guzelian, A. A.; Bardeen, C. J.; Alivisatos, A. P.; Shank, C. V. Phys. Rev. B 1997, 55, 7059.  

18 Savitski, V. G.; Malyarevich, A. M.; Demchuk, M. I.; Yusmashev, K. V.; Raaben, H.; Zhilin, A. A. J. Opt. Soc. Am. B2005, 22, 1660.  

19 Elim, H. I.; Ji, W.; Ng, M. T.; Vittal, J. J. Appl. Phys. Lett.2007, 90, 033106.  

20 Tian, L.; Ng, M. T.; Venkatram, N.; Ji, W.; Vittal, J. J. J. Cryst. Growth 2010, 10, 1237.  

21 Tian, L.; Elim, H. I.; Ji, W.; Vittal, J. J. Chem. Commun.2006, 4276.  

22 Batabyal, S. K.; Tian, L.; Venkatram, N.; Ji, W.; Vittal, J. J. J. Phys. Chem. C 2009, 113, 15037.  

23 Guo, Q.; Hillhouse, H. W.; Agrawal, R. J. Am. Chem. Soc.2009, 131, 11672.  

24 Steninhagen, C.; Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B. A. J. Am. Chem. Soc. 2009, 13,12554.

25 Liao, J. H.; Kanatzidis, M. G. Chem. Mater. 1993, 5, 1561.  

26 Paier, J.; Asahi, R.; Nagoya, A.; Kresse, G. Phys. Rev. B2009, 79, 115126.  

27 Nandakumar, P.; Vijayan, C.; Murti, Y. V. G. S. Opt. Commun.2000, 185, 457.  

28 Liu, M. M.S. Thesis, Southeast University, Nanjing, 2005 (in Chinese). (刘宓, 硕士论文, 东南大学, 南京, 2005.)  

29 Yang, X. Y.; Xiang, W. D.; Zhao, H. J.; Zhang, X. Y.; Liang, X. J.; Dai, S. X.; Chen, F. F. Mater. Res. Bull. 2011, 46, 355.  

30 Liu, Q.-M.; He, X.; Zhou, X.; Ren, F.; Xiao, X.-H.; Jiang, C.-Z.; Zhou, H.; Zhao, X.-J.; Lu, L.-P.; Qian, S.-X. J. Non-Cryst. Solids 2011, 357, 2320.  

31 Wang, G.; Cui, Y.-P. Acta Opt. Sin. 2001, 21, 219 (in Chinese). (王刚, 崔一平, 光学学报, 2001, 21, 219.)

32 Hamanaka, Y.; Kuzuya, T.; Sofue, T.; Kino, T.; Sumiyama, K. Chem. Phys. Lett. 2008, 466, 176.  

33 Ding, S.; Wang, X.-H.; Du, Y.-M.; Wang, Q.-Q. Acta Phys. Sinica 2006, 55, 753 (in Chinese). (丁沙, 王小慧, 杜予民, 王取泉, 物理学报, 2006, 55,753.)

34 Koo, B.; Patel, R. N.; Korgel, B. A. J. Am. Chem. Soc. 2009,131, 3134.  

文章导航

/