研究论文

细胞内溶液的非理想性对细胞最优化低温保存程序的影响

  • 李卫兵 ,
  • 乔赫元 ,
  • 赵刚
展开
  • 中国科学技术大学 电子科学与技术系 低温生物医学工程实验室, 安徽合肥 230027

收稿日期: 2011-09-19

  修回日期: 2012-03-30

  网络出版日期: 2012-03-30

基金资助

国家自然科学基金(No. 51076149)和中央高校基础科研业务费专项基金资助.

Effect of Non-ideality of Intracellular Solution on the Optimal Protocols for Cell Cryopreservation

  • LI Wei-Bing ,
  • QIAO He-Yuan ,
  • ZHAO Gang
Expand
  • University of Science and Technology of China, Department of Electronic Science and Technology, Laboratory of Cryo-Biomedical Engineering, Hefei 230027, Anhui Province

Received date: 2011-09-19

  Revised date: 2012-03-30

  Online published: 2012-03-30

Supported by

Supported by the National Natural Science Foundation of China (No. 51076149) and the Fundamental Research Funds for the Central Universities.

摘要

为了对细胞的最优化低温保存方案提供理论预测, 考虑细胞内溶液为非理想溶液, 建立了一个新的胞内冰晶成核与生长模型. 与基于修正的Mazur 方程的理想溶液模型相比, 新模型进一步耦合了Fahy 的水输运方程与冰晶成核、扩散控制的冰晶生长理论. 使用改进后的胞内冰模型详细研究了以甘油为低温保护剂的老鼠卵细胞的冷冻过程. 通过比较分析两种模型下降温速率、初始甘油浓度对胞内溶液体积、胞内冰晶体积份额等的影响, 我们得出较低的降温速率下, 两种模型预测的结果具有比较显著的差异, 而高降温速率条件下, 两种模型预测的结果一致.

本文引用格式

李卫兵 , 乔赫元 , 赵刚 . 细胞内溶液的非理想性对细胞最优化低温保存程序的影响[J]. 化学学报, 2012 , 70(11) : 1263 -1270 . DOI: 10.6023/A1109192

Abstract

To predict the optimal cryopreservation protocol for biological cells, a new intracellular ice formation model was developed by incorporating the nonideality into the intracellular solution. Compared with the ideal solution model based on the modified Mazur’s water transport equation, the new model further coupled Fahy’s water transport equation, ice nucleation, and the diffusion-limited ice growth theory. The new model was then used to study the freezing process of mouse oocyte in the presence of glycerol as a cryoprotective agent. Through the comparative analysis of the influence of cooling rate and initial glycerol concentration on the intracellular solution volume and the crystallized volume fraction under these two models, it was found that the predictions by these two models had significant difference at low cooling rate, while they are consistent at high cooling rate.

参考文献

1 Hua, T.-C.; Ren, H.-S. Cryobiomedical Techniques, Science Press, Beijing, 1984 (in Chinese). (华泽钊, 任禾盛, 低温生物医学技术, 科学出版社, 北 京, 1994.)  

2 Zhao, G. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2004 (in Chinese). (赵刚, 博士论文, 中国科学技术大学, 合肥, 2004.)  

3 Mazur, P.; Leibo, S. P.; Chu, E. H. Y. Exp. Cell. Res. 1972,71, 345.  

4 Mazur, P. Am. J. Physiol. 1984, 247, C125.  

5 Mazur, P. J. Gen. Physiol. 1963, 47, 347.  

6 Mansoori, G. A. Cryobiology 1975, 12, 34.  

7 Fahy, G. M. Biophys. J. 1980, 32, 837.

8 Fahy, G. M. Cryobiology 1981, 18, 473.  

9 Karlsson, J. O. M. J. Appl. Phys. 1984, 75, 4442.

10 Zhao, G.; Liu, Z.-F.; Yang, R.; Cheng, S.-X. Acta Chim. Sinica 2007, 65, 295 (in Chinese). (赵刚, 刘志峰, 杨锐, 程曙霞, 化学学报, 2007, 65, 295.)

11 Saenz, J.; Toner, M.; Risco, R. J. Phys. Chem. B 2009, 113,4853.  

12 Li, W.-B.; Zhao, G. Acta Chim. Sinica 2010, 68, 617 (in Chinese). (李卫兵, 赵刚, 化学学报, 2010, 68, 617.)

13 Rall, W. F.; Mazur, P.; McGrath, J. J. Biophys. J. 1983, 41,1.

文章导航

/