研究论文

梳状丙烯酸酯类共聚物凝胶电解质的传输性能与自由体积

  • 周华龙 ,
  • 马晓燕 ,
  • 王毅霏 ,
  • 管兴华 ,
  • 王波
展开
  • a 西北工业大学理学院应用化学系 西安 710129;
    b 武汉大学物理科学与技术学院 武汉 430072

收稿日期: 2011-08-28

  修回日期: 2011-10-27

  网络出版日期: 2011-12-06

基金资助

陕西省自然基金重点项目(No. 2009JZ004)、校基础研究基金(No. JC201158)和研究生创业种子基金(No. Z2011015)资助项目.

Transmission Performance and Free Volume of Gel Electrolyte Membranes Based on Comb-like Methyl Methacrylate Copolymers

  • Zhou Hualong ,
  • Ma Xiaoyan ,
  • Wang Yifei ,
  • Guan Xinghua ,
  • Wang Bo
Expand
  • a Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710129;
    b School of Physics and Technology, Wuhan University, Wuhan 430072

Received date: 2011-08-28

  Revised date: 2011-10-27

  Online published: 2011-12-06

Supported by

Project supported by the key project of Natural Science Foundation of Shaanxi Province (No. 2009JZ004), the NPU Foundations for Fundamental Research (No. JC201158) and graduate starting seed fund of Northwestern Polytechnical University (No. Z2011015).

摘要

用三种分子量大小不等的聚乙二醇单甲醚(PEGME)与甲基丙烯酸甲酯-马来酸酐共聚物[P(MMA-co-MAh)]反应,制备了三种支链长度不等的梳状共聚物(MMA/MAh-g-PEGME), 并以此为基体, 加入增塑剂碳酸丙烯酯(PC)和高氯酸锂(LiClO4), 采用溶剂浇铸法制备了三种凝胶聚合物电解质(GPE)膜, 研究了其离子传输性能, 发现该聚合物凝胶电解质的离子传输机理符合VTF (Vogel-Tamman-Fulcher)方程, 即离子传输性能与凝胶体系自由体积的大小有关; 采用正电子湮没寿命谱仪(PALS)研究了GPE 体系的自由体积特性, 获得了各支链长度不同的共聚物凝胶电解质的自由体积分数, 分析各自由体积与离子传输性能之间的关系, 建立了共聚物结构、凝胶聚合物自由体积及其传输性能之间的关系. 发现梳状共聚物支链长度越长, 凝胶电解质的自由体积越大, 离子传输性能越高.

本文引用格式

周华龙 , 马晓燕 , 王毅霏 , 管兴华 , 王波 . 梳状丙烯酸酯类共聚物凝胶电解质的传输性能与自由体积[J]. 化学学报, 2012 , 70(06) : 783 -788 . DOI: 10.6023/A1108281

Abstract

Three comb-like methyl methacrylate copolymer matrixes for gel polymer electrolyte (GPE) were synthesized by reacting methyl methacrylate-maleic anhydride copolymer (P(MMA-co-MAh)) with poly(ethylene glycol) monomethylether (PEGME) of different molecular weight (350, 600, and 750), respectively. Three kinds of GPE membranes made from comb-like copolymers as matrix, shorted for CL350, CL600, CL750, propylene carbonate (PC) as plasticizer and LiClO4 as salt, have been prepared by solution casting technique. By studying the ion transporting properties of the GPE, it is found that the conduction mechanism of the GPE accords with VTF (Vogel-Tamman-Fulcher) equation, which is derived from free volume theory. Positron annihilation lifetime spectroscopy (PALS) was employed to analyze the properties of free volume in GPE systems and the effect of microstructure on conductivity of GPE membranes. It is noted that increasing the side chain length of polymer matrixes will increase the free volume existed in system. When the content of polymer matrix is 45 wt%, free volume in CL750 based GPE membrane is 21% larger than that in CL350 based GPE membrane. Correspondingly, compared with CL350 system, the ionic conductivity of CL750 system grows by 200%. It is apparent that the ionic conductivity of GPE membranes is affected by the structure of polymer matrix to a great extent.

参考文献

1 Ramesh, S.; Chao, L. Z. Ionics 2011, 17, 29.  

2 Kumar, D.; Hashmi, S. A. J. Power Sources 2010, 195,5101.  

3 Ye, L.; Ju, L.; Wu, C.; Feng, T.; Mo, W.; Wu, F.; Bai, Y.; Feng, Z. G. J. Appl. Polym. Sci. 2009, 114, 1086.  

4 Rajendran, S.; Babu, R. S.; Sivakumar, P. J. Power Sources2007, 170, 460.  

5 Subramania, A.; Sundaram, N. T. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T. J. Appl. Polym. Sci. 2005, 98,1891.  

6 Armand, M. B.; Chabagno, J. B.; Duclot, M. J. Fast Ion Transport in Solid. Amsterdam, Eds.: Vashishta P.; Mondy, J. M.; Shenoy, D. K., Holland, 1979, p. 131~136.

7 Reiche, A.; Dlubek, G.; Weinkauf, A.; Sandner, B.; Fretwell, H. M.; Alam, A. A.; Fleischer, G.; Ritting, F.; K?rger, J.; Meyer, W. J. Phys. Chem. B 2000, 104, 6397.  

8 Bansal, D.; Cassel, F.; Croce, F.; Hendrickson, M.; Plichta, E.; Salomon, M. J. Phys. Chem. B 2005, 109, 4492.  

9 Bamford, D.; Reiche, A.; Dlubek, G.; Alloin, F.; Sanchez, J. Y.; Alam, M. A. J. Chem. Phys. 2003, 118, 9420.

10 Luo, D.; Li, Y.; Yang, M. J. Mater. Chem. Phys. 2011, 125,231.  

11 Liu, Y.; Lee, J. Y.; Hong, L. Solid State Ionics 2002, 150,317.  

12 Qi, L.; Dong, S. J. J. Appl. Polym. Sci. 2007, 104, 576.  

13 Liang, Y. H.; Cheng-Chien, W. B.; Chen, C. Y. J. Power Sources 2008, 176, 340.  

14 Wang, Y. F.; Ma, X. Y.; Zhang, Q. L.; Tian, N. J. Membr. Sci. 2010, 349, 279.  

15 Wang, S. H.; Yan, H. X.; Ma, X. Y.; Huang, Y. Acta Polym. Sinica 2008, (5), 442 (in Chinese). (王书会, 颜红侠, 马晓燕, 黄韵, 高分子学报, 2008, (5),442.)  

16 Pethrick, R. A. Prog. Polym. Sci. 1997, 22, 1.  

17 Dutta, D.; Ganguly, B. N.; Gangopadhyay, D.; Mukherjee, T.; Dutta-Roy, B. J. Phys. Chem. B 2004, 108, 8947.  

18 He, C. Q.; Suzuki, T.; Shantarovich, V. P.; Djourelov, N.; Kondo, K.; Ito, Y. Chem. Phys. 2004, 303, 219.  

19 McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43,5163.  

20 Jean, Y. C. Microchem. J. 1990, 42, 72.
文章导航

/